1. Let

$$
I=\int_{S} \frac{\boldsymbol{x} \cdot \boldsymbol{n} d S}{|\boldsymbol{x}|^{3}}
$$

Show that $I=4 \pi$ if S is the sphere $|\boldsymbol{x}|=R$ and that $I=0$ if S bounds a volume that does not contain the origin ($\boldsymbol{x}=0$).
Show that the electric field, defined for $\boldsymbol{x} \neq \boldsymbol{a}$ by $\boldsymbol{E}(\boldsymbol{x})=\frac{q}{4 \pi \epsilon_{0}} \frac{\boldsymbol{x}-\boldsymbol{a}}{|\boldsymbol{x}-\boldsymbol{a}|^{3}}$, satisfies

$$
\int_{S_{1}} \boldsymbol{E} \cdot d \boldsymbol{S}=\left\{\begin{array}{cc}
0 & \text { if a } \notin \mathrm{V} \\
\frac{q}{\epsilon_{0}} & \text { if } \mathrm{a} \in \mathrm{~V}
\end{array}\right.
$$

where S_{1} is a closed surface bounding a volume V, and where the electric charge q, and permittivity of free space, ϵ_{0}, are constants. This is Gauss's law for a point electric charge.
2. The vector field $\boldsymbol{F}(\boldsymbol{x})$ is given in cylindrical polar coordinates r, θ, z (for $r \neq 0$) by

$$
\boldsymbol{F}(\boldsymbol{x})=r^{-1} \boldsymbol{e}_{\theta} .
$$

Evaluate $\nabla \times \boldsymbol{F}$ using the formula for curl in cylindrical polars. Calculate $\oint_{C} \boldsymbol{F} \cdot d \boldsymbol{s}$, where C is the circle $z=0, r=1$ and $0 \leq \theta \leq 2 \pi$. Does Stokes's theorem apply? Why not?
3. Show that the unit basis vectors of cylindrical polar coordinates satisfy

$$
\begin{equation*}
\frac{\partial \boldsymbol{e}_{r}}{\partial \theta}=\boldsymbol{e}_{\theta}, \quad \frac{\partial \boldsymbol{e}_{\theta}}{\partial \theta}=-\boldsymbol{e}_{r}, \tag{1}
\end{equation*}
$$

all other derivatives of the three basis vectors being zero.
Given that the gradient operator in cylindrical polars is

$$
\boldsymbol{\nabla}=\boldsymbol{e}_{r} \frac{\partial}{\partial r}+\boldsymbol{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}+\boldsymbol{e}_{z} \frac{\partial}{\partial z},
$$

use (1) to obtain expressions for $\boldsymbol{\nabla} \cdot \boldsymbol{A}$ and $\boldsymbol{\nabla} \times \boldsymbol{A}$, where $\boldsymbol{A}=A_{1} \boldsymbol{e}_{r}+A_{2} \boldsymbol{e}_{\theta}+A_{3} \boldsymbol{e}_{z}$.
4. The surface S encloses a volume in which the scalar field satisfies the Klein-Gordon equation

$$
\nabla^{2} u=m^{2} u, \quad \boldsymbol{x} \in \boldsymbol{R}^{3},
$$

where m is a real non-zero constant. Prove that u is uniquely determined if either u or $\partial u / \partial n$ is given on S.
5. Find all solutions of the two-dimensional Laplace equation $\nabla^{2} \phi=0$ that can be written in the separable form $\phi(r, \theta)=R(r) \Theta(\theta)$, where r and θ are plane polar coordinates.
Hence solve, for $r<a$, the following boundary value problem, assuming that $\phi(r, \theta)$ satisfies a reasonable physical condition at $r=0$:

$$
\begin{equation*}
\nabla^{2} \phi=0, \quad \phi(a, \theta)=\sin \theta . \tag{2}
\end{equation*}
$$

Find also the solution for $r>a$ that satisfies $\phi(r, \theta) \rightarrow 0$ as $r \rightarrow \infty$.
6. The scalar function ϕ is a function only of the radial coordinate r in \boldsymbol{R}^{3}. Use Cartesian coordinates and the chain rule to show that

$$
\begin{equation*}
\nabla \phi=\phi^{\prime}(r) \frac{\boldsymbol{x}}{r}, \quad \nabla^{2} \phi=\phi^{\prime \prime}(r)+\frac{2}{r} \phi^{\prime}(r) \tag{3}
\end{equation*}
$$

Find the solution of $\nabla^{2} \phi=1$ in the region $r \leq a$ that is bounded and satisfies $\phi(a)=1$.
7. Show that within a closed surface S, not more than one solution of Poisson's equation $\nabla^{2} \phi=f$ satisfies the boundary condition

$$
g \frac{\partial \phi}{\partial n}+\phi=0
$$

on S, where $g(\boldsymbol{x}) \geq 0$ on S.
Show that $\phi(\boldsymbol{x})=x$ satisfies Laplace's equation and the above boundary condition with S being the unit sphere $|\boldsymbol{x}|=1$. Deduce that the condition $g(\boldsymbol{x}) \geq 0$ on S cannot be omitted in the above uniqueness theorem.
8. The functions u and w are defined in a volume V. Show that

$$
\int_{V}|\nabla w|^{2} d V-\int_{V}|\nabla u|^{2} d V=\int_{V}|\nabla(w-u)|^{2} d V+2 \int_{V} \nabla u \cdot \nabla(w-u) d V
$$

If $u=w$ on the boundary of V and u is harmonic, show that

$$
\int_{V}|\nabla w|^{2} d V \geq \int_{V}|\nabla u|^{2} d V
$$

9. The scalar field ϕ is harmonic in a volume V bounded by a closed surface S. Given that V does not contain the origin $(r=0)$, show that

$$
\int_{S}\left(\phi \nabla\left(\frac{1}{r}\right)-\left(\frac{1}{r}\right) \nabla \phi\right) \cdot \boldsymbol{n} d S=0
$$

Now let V be the volume given by $\epsilon \leq r \leq a$ and let S_{1} be the surface $r=a$. Given that $\phi(\boldsymbol{x})$ is harmonic for $r \leq a$, use the above result, in the limit $\epsilon \rightarrow 0$, to show that

$$
\phi(0)=\frac{1}{4 \pi a^{2}} \int_{S_{1}} \phi(\boldsymbol{x}) d S
$$

Deduce that if ϕ is harmonic (but not constant) in a general volume V, then it attains its maximum and minimum values of S.
10. If $\nabla^{2} \phi=f(\boldsymbol{x})$ in a volume V enclosed by a surface S and \boldsymbol{x}_{0} is a point within V, show that

$$
4 \pi \phi\left(\boldsymbol{x}_{0}\right)=-\int_{V} \frac{f(\boldsymbol{x})}{\left|\boldsymbol{x}-\boldsymbol{x}_{0}\right|} d V+\int_{S}\left(\frac{1}{\left|\boldsymbol{x}-\boldsymbol{x}_{0}\right|} \frac{\partial \phi}{\partial n}(\boldsymbol{x}) \frac{\partial}{\partial n}\left(\frac{1}{\left|\boldsymbol{x}-\boldsymbol{x}_{0}\right|}\right)\right) d S
$$

Deduce a corresponding formula for the case where \boldsymbol{x}_{0} lies on S.
[Hint: The first part is in your notes so you can replicate that derivation. When \boldsymbol{x}_{0} is on the boundary, punch out a semi-spherical region around it rather than a spherical one as is done when \boldsymbol{x}_{0} is within V, and follow a similar procedure.]

