1. Verify the Stokes theorem for the vector field

$$
\boldsymbol{F}=\left(3 x-y,-\frac{1}{2} y z^{2},-\frac{1}{2} y^{2} z\right),
$$

where S is the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$, so that C is a circle in the $x-y$ plane.
2. Using the substitution

$$
u=y^{2}-x^{2}, \quad v=2 x y
$$

or otherwise, evaluate the integral

$$
I=\iint_{S}\left(x^{2}+y^{2}\right)^{3} d x d y
$$

where S is the finite region in the first quadrant, bounded by the lines $x^{2}-y^{2}=1, y^{2}-x^{2}=1$, $x y=1$ and $x y=2$.
3. Find the unit vectors $\boldsymbol{e}_{r}, \boldsymbol{e}_{\theta}, \boldsymbol{e}_{z}$ of a cylindrical polar coordinate system (r, θ, z) in terms of $\boldsymbol{i}, \boldsymbol{j}$ and \boldsymbol{k}. Solve for $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ in terms of $\boldsymbol{e}_{r}, \boldsymbol{e}_{\theta}, \boldsymbol{e}_{z}$. Represent the vector $\boldsymbol{F}=y \boldsymbol{i}+z \boldsymbol{j}+x \boldsymbol{k}$ in cylindrical coordinates in the form $\boldsymbol{F}=F_{1} \boldsymbol{e}_{r}+F_{2} \boldsymbol{e}_{\theta}+F_{3} \boldsymbol{e}_{z}$ and verify that $\nabla \cdot \boldsymbol{F}=0$ (this follows immediately from the Cartesian form).
4. Find the scale factors h_{1}, h_{2}, h_{3} for the parabolic cylinder coordinates (u, v, z) given in terms of the Cartesian coordinates $\left(x_{1}, x_{2}, x_{3}\right)$ by

$$
x_{1}=\frac{1}{2}\left(u^{2}-v^{2}\right), \quad x_{2}=u v, \quad x_{3}=z
$$

If $\phi \equiv \phi(u, v, z)$ is a scalar field expressed in terms of parabolic cylinder coordinates, find $\nabla^{2} \phi$ in terms of these coordinates.
5. If (r, θ, φ) are spherical polar coordinates, verify that $u=r \cos \theta$ and $u=r^{-2} \cos \theta$ are solutions of Laplace's equation $\nabla^{2} u=0$.
6. Laplace's equation in the plane given in terms of polar coordinates (r, θ) is given by

$$
\nabla^{2} \phi \equiv \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \phi}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}}=0
$$

In each of the cases (i) $0 \leq r \leq 1$, and (ii) $1 \leq r<\infty$, find the general solution of Laplace's equation which is single-valued and finite.
Solve also Laplace's equation in the annulus $a \leq r \leq b$ with boundary conditions

$$
\begin{array}{ccccc}
\phi=1 & \text { on } & \mathrm{r}=\mathrm{a} & \text { for all } \theta, \\
\phi=2 & \text { on } & \mathrm{r}=\mathrm{b} & \text { for all } \theta .
\end{array}
$$

