
M2AA2 - Multivariable Calculus. Problem Sheet 1 Solutions
Professor D.T. Papageorgiou, January 2009.

1. (i) A · r = A1x1 +A2x2 +A3x3, hence ∇(A · r) = (A1, A2, A3) = A.

(ii) rn = |r|n = (x2 + y2 + z2)n/2. First component of ∇(rn) is

∂rn

∂x
= nrn−1 ∂r

∂x
= nrn−1x

r
= nrn−2x.

Similarly for the other components, therefore

∇rn = nrn−2r.

(iii) r ·∇(x+y+z) = x+y+z, therefore, ∇(r ·∇(x+y+z)) = (1, 1, 1).

2. (a) Consider the first component, i.e.

∂(φψ)
∂x

= φ
∂ψ

∂x
+ ψ

∂φ

∂x
,

with similar results for the y and z components. Hence the result
follows.

(b) Consider the first component: ∂f(r)
∂x = f ′(r)x1

r . Putting all com-
ponents together gives ∇(f(r)) = f ′(r)

r (x1, . . . , xn) = f ′(r)
r r.

(c) Noting that ∇2f(r) = ∇ · ∇f(r) = ∇ · (f ′(r)
r r) we obtain

∇2f(r) =
f ′(r)
r

∇ · r + r · ∇(f ′(r)/r)

=
nf ′(r)
r

+ r ·
[(
f ′′(r)
r
− f ′(r)

r2

)
r

r

]
= = f ′′ − (n− 1)

r
f ′.

(d) The equation can be written as 1
rn−1 (rn−1f ′)′ = 0, which can

be integrated twice to yield f(r) = A
rn + B where A and B are

constants. When n = 2 a solution to Laplace’s equation is f(r) =
1/(x2 + y2).

3. The required derivative is p · (∇φ)(1,1,2) where p = (1, 2, 3)/
√

14 is a
unit vector in the direction (1, 2, 3). Calculating gives (1, 2, 3)/

√
14 ·

(6, 1, 4) = 20/
√

14.
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4. Let the zero level sets of the functions φ1 = x2 + 2y2 − z2 − 8 and
φ2 = x2 + y2 + z2 − 6 represent the two surfaces. The normals to
the surfaces at P (1, 2, 1) are n1,2 = ∇φ1,2|(1,2,1), i.e. n1 = (2, 8,−2),
n2 = (2, 4, 2).

The tangent to surface 1 at P is (r− r0) ·n1 = 0 where r0 = (1, 2, 1).
Hence the equation is

x+ 4y − z = 8.

The required angle (call it θ) is the angle between the normals; n1·n2 =
|n1| |n2| cos θ. Hence θ = cos−1(4/3

√
3).

5. Let φ = 3x2y sin(πx/2)− z and hence

∇φ =

(
6xy sin(πx/2) +

3πx2y

2
cos(πx/2), 3x2 sin(πx/2), −1

)

is normal to the surface at any point. In particular n = (6, 3,−1) is a
vector normal to the surface at (1, 1, 3). The equation of the tangent
is [(x, y, z)−(1, 1, 3)] ·(6, 3,−1) = 0, i.e. 6x+3y−z = 6 is the required
equation.

The marble will roll in the direction of maximum decrease of φ(x, y, z) =
0. This is the direction u = −∇φ/|∇φ| and when this is evaluated at
x = 1, y = 1/2 we find u = −(3, 3,−1)/

√
10. Hence the direction of

descent is southwest.

6. Let F1 be the focus at (−ae, 0) and F2 that at (ae, 0) and take P (x, y)
to be any point on the ellipse. Note also the vectors −−→F1P = (x+ae, y)
and −−→F2P = (x − ae, y), and the normal to the surface at P which is
given by n = (2x2/a2, 2y/b2). We can now find the angle between −−→F1P
and n to be

cos−1


(

2x
a2 (x+ ae) + 2y2

b2

)
|n|
√

(x+ ae)2 + y2

 .
After some algebra and using the fact b2 = a2(e2 − 1), this angle can
be shown to be

cos−1
(

2
a|∇φ|

)
.

Now repeat for the angle between the vector −−→F2P and n and show that
it gives the same result, hence the answer.

Also, FaP + F2P = 2a which is independent of x and y.
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Physical interpretation. This example shows that if you shine a ray of
light from one focus of an ellipse it will bounce off the elliptical wall
and get reflected to the other focus. The physical interpretation is that
when a ray of light hits a surface it is reflected from the surface along
a line that subtends the same angle with the tangent to the surface as
did the original ray.

7. (i) ∇φ = r2∇x+ x∇r2 = r2(1, 0, 0) + 2xr.
(ii) ∇ · (xr2r) = xr2∇ · r + r · ∇xr2 = 6xr2.
(iii) Consider first component of ∇× (f(r)r). This is

∂

∂y
(zf(r))− ∂∂z(yf(r)) =

yzf ′(r)
r

− yzf ′(r)
r

= 0.

Similarly for the other components, therefore the answer is 0.

8. (i) ∇ · (u × v) = ∇ · (0,−z3, z2y) = 2yz, and ∇ × u = (0, 2z, 0),
∇× v = (0, 0, 0). Hence RHS is equal to LHS.

(ii) ψu = (x2z2 + y2z2 + z4, 0, 0), ∇ψ = (2x, 2y, 2z), so LHS = 2xz2

and the RHS = (2x, 2y, 2z) · (z2, 0, 0) = 2xz2.

9. Since x = uv and y = 1/v, we have u = xy and v = 1/y. Hence the
chain rule gives

∂

∂x
→ ∂u

∂x

∂

∂u
+
∂v

∂x

∂

∂v

= y
∂

∂u
=

1
v

∂

∂u

∂

∂y
→ ∂u

∂y

∂

∂u
+
∂v

∂y

∂

∂v

= x
∂

∂u
− 1
y2

∂

∂v
= uv

∂

∂u
− v2 ∂

∂v

Now we can calculate (subscripts will be used to denote partial deriva-
tives, e.g. fx = ∂f

∂x etc.):

fx =
1
v
Fu, fxx =

1
v

(
1
v
Fu

)
u

=
1
v2
Fuu, fy = uvFu − v2Fv (1)

fyy =
(
uv

∂

∂u
− v2 ∂

∂v

)(
uvFu − v2Fv

)
= u2v2Fuu − 2uv3Fuv + 2v3Fv + v4Fvv
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fxy =
1
v

(
uvFu − v2Fv

)
u

=
1
v

(
vFu + uvFuu − v2Fuv

)
Now substitute all these expressions into the equation and eliminate
x, y in favour of u, v to get

v2Fvv = 0 ⇒ Fvv = 0.

The general solution is

F (u, v) = α(u)v + β(u) ⇒ f(x, y) =
α(xy)
y

+ β(xy),

where α(·) and β(·) are arbitrary functions of integration that can be
fixed once boundary conditions are provided.

10. Use the chain rule on g(x, y, t) = f(xt, yt) to find
∂g

∂t
= fx(xt, yt)

∂

∂t
(xt) + fy(xt, yt)

∂

∂t
(yt) = xfx(xt, yt) + yfy(xt, yt),

as required.

Now if f(xt, yt) = tnf(x, y), we can differentiate this w.r.t t and use
the result above for the LHS, i.e.

xfx(xt, yt) + yfy(xt, yt) = ntn−1f(x, y).

Now put t = 1 to obtain the result.

To obtain the last part, differentiate gt with respect to t again to get

gtt = x(fx(xt, yt))t + y(fy(xt, yt))t

= x [xfxx(xt, yt) + yfxy(xt, yt)] + y [xfxy(xt, yt) + yFyy(xt, yt)]

Also (tnf(x, y))tt = n(n − 1)tn−2f(x, y), and so equating these and
setting t = 1 gives us what we want.

Note: This can be done for functions f : Rk → R also, in a nice
compact form. Denote the function f(x) where x = (x1, . . . , xk), and
define g(x, t) = f(xt).

Differentiating w.r.t. t we get

gt = x1fx1(xt) + . . .+ xkfxk
(xt) = x · ∇f(xt).

It follows immediately by setting t = 1 as before that for a homoge-
neous function f(xt) = tnf(x) we have the compact formula

x · ∇f(x) = (n− 1)f(x),

and higher derivatives can be taken to get higher order identities also
as done by you in R2.
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