M2AA2 - Multivariable Calculus. Problem Sheet 1 Solutions
Professor D.T. Papageorgiou, January 2009.

1. (i) $\boldsymbol{A} \cdot \boldsymbol{r}=A_{1} x_{1}+A_{2} x_{2}+A_{3} x_{3}$, hence $\nabla(\boldsymbol{A} \cdot \boldsymbol{r})=\left(A_{1}, A_{2}, A_{3}\right)=\boldsymbol{A}$.
(ii) $r^{n}=|\boldsymbol{r}|^{n}=\left(x^{2}+y^{2}+z^{2}\right)^{n / 2}$. First component of $\nabla\left(r^{n}\right)$ is

$$
\frac{\partial r^{n}}{\partial x}=n r^{n-1} \frac{\partial r}{\partial x}=n r^{n-1} \frac{x}{r}=n r^{n-2} x .
$$

Similarly for the other components, therefore

$$
\nabla r^{n}=n r^{n-2} \boldsymbol{r} .
$$

(iii) $\boldsymbol{r} \cdot \nabla(x+y+z)=x+y+z$, therefore, $\nabla(\boldsymbol{r} \cdot \nabla(x+y+z))=(1,1,1)$.
2. (a) Consider the first component, i.e.

$$
\frac{\partial(\phi \psi)}{\partial x}=\phi \frac{\partial \psi}{\partial x}+\psi \frac{\partial \phi}{\partial x},
$$

with similar results for the y and z components. Hence the result follows.
(b) Consider the first component: $\frac{\partial f(r)}{\partial x}=f^{\prime}(r) \frac{x_{1}}{r}$. Putting all components together gives $\nabla(f(r))=\frac{f^{\prime}(r)}{r}\left(x_{1}, \ldots, x_{n}\right)=\frac{f^{\prime}(r)}{r} \boldsymbol{r}$.
(c) Noting that $\nabla^{2} f(r)=\nabla \cdot \nabla f(r)=\nabla \cdot\left(\frac{f^{\prime}(r)}{r} \boldsymbol{r}\right)$ we obtain

$$
\begin{aligned}
\nabla^{2} f(r) & =\frac{f^{\prime}(r)}{r} \nabla \cdot \boldsymbol{r}+\boldsymbol{r} \cdot \nabla\left(f^{\prime}(r) / r\right) \\
& =\frac{n f^{\prime}(r)}{r}+\boldsymbol{r} \cdot\left[\left(\frac{f^{\prime \prime}(r)}{r}-\frac{f^{\prime}(r)}{r^{2}}\right) \frac{\boldsymbol{r}}{r}\right] \\
& ==f^{\prime \prime}-\frac{(n-1)}{r} f^{\prime} .
\end{aligned}
$$

(d) The equation can be written as $\frac{1}{r^{n-1}}\left(r^{n-1} f^{\prime}\right)^{\prime}=0$, which can be integrated twice to yield $f(r)=\frac{A}{r^{n}}+B$ where A and B are constants. When $n=2$ a solution to Laplace's equation is $f(r)=$ $1 /\left(x^{2}+y^{2}\right)$.
3. The required derivative is $\boldsymbol{p} \cdot(\nabla \phi)_{(1,1,2)}$ where $\boldsymbol{p}=(1,2,3) / \sqrt{14}$ is a unit vector in the direction $(1,2,3)$. Calculating gives $(1,2,3) / \sqrt{14}$. $(6,1,4)=20 / \sqrt{14}$.
4. Let the zero level sets of the functions $\phi_{1}=x^{2}+2 y^{2}-z^{2}-8$ and $\phi_{2}=x^{2}+y^{2}+z^{2}-6$ represent the two surfaces. The normals to the surfaces at $P(1,2,1)$ are $\boldsymbol{n}_{1,2}=\left.\nabla \phi_{1,2}\right|_{(1,2,1)}$, i.e. $\boldsymbol{n}_{1}=(2,8,-2)$, $\boldsymbol{n}_{2}=(2,4,2)$.
The tangent to surface 1 at P is $\left(\boldsymbol{r}-\boldsymbol{r}_{0}\right) \cdot \boldsymbol{n}_{1}=0$ where $\boldsymbol{r}_{0}=(1,2,1)$. Hence the equation is

$$
x+4 y-z=8 .
$$

The required angle (call it θ) is the angle between the normals; $\boldsymbol{n}_{1} \cdot \boldsymbol{n}_{2}=$ $\left|\boldsymbol{n}_{1}\right|\left|\boldsymbol{n}_{2}\right| \cos \theta$. Hence $\theta=\cos ^{-1}(4 / 3 \sqrt{3})$.
5. Let $\phi=3 x^{2} y \sin (\pi x / 2)-z$ and hence

$$
\nabla \phi=\left(6 x y \sin (\pi x / 2)+\frac{3 \pi x^{2} y}{2} \cos (\pi x / 2), 3 x^{2} \sin (\pi x / 2),-1\right)
$$

is normal to the surface at any point. In particular $\boldsymbol{n}=(6,3,-1)$ is a vector normal to the surface at $(1,1,3)$. The equation of the tangent is $[(x, y, z)-(1,1,3)] \cdot(6,3,-1)=0$, i.e. $6 x+3 y-z=6$ is the required equation.
The marble will roll in the direction of maximum decrease of $\phi(x, y, z)=$ 0 . This is the direction $\boldsymbol{u}=-\nabla \phi /|\nabla \phi|$ and when this is evaluated at $x=1, y=1 / 2$ we find $\boldsymbol{u}=-(3,3,-1) / \sqrt{10}$. Hence the direction of descent is southwest.
6. Let F_{1} be the focus at $(-a e, 0)$ and F_{2} that at $(a e, 0)$ and take $P(x, y)$ to be any point on the ellipse. Note also the vectors $\overrightarrow{F_{1} P}=(x+a e, y)$ and $\overrightarrow{F_{2} P}=(x-a e, y)$, and the normal to the surface at P which is given by $\boldsymbol{n}=\left(2 x^{2} / a^{2}, 2 y / b^{2}\right)$. We can now find the angle between $\overrightarrow{F_{1} P}$ and \boldsymbol{n} to be

$$
\cos ^{-1}\left(\frac{\left(\frac{2 x}{a^{2}}(x+a e)+\frac{2 y^{2}}{b^{2}}\right)}{|\boldsymbol{n}| \sqrt{(x+a e)^{2}+y^{2}}}\right) .
$$

After some algebra and using the fact $b^{2}=a^{2}\left(e^{2}-1\right)$, this angle can be shown to be

$$
\cos ^{-1}\left(\frac{2}{a|\nabla \phi|}\right) .
$$

Now repeat for the angle between the vector $\overrightarrow{F_{2} P}$ and \boldsymbol{n} and show that it gives the same result, hence the answer.
Also, $F_{a} P+F_{2} P=2 a$ which is independent of x and y.

Physical interpretation. This example shows that if you shine a ray of light from one focus of an ellipse it will bounce off the elliptical wall and get reflected to the other focus. The physical interpretation is that when a ray of light hits a surface it is reflected from the surface along a line that subtends the same angle with the tangent to the surface as did the original ray.
7. (i) $\nabla \phi=r^{2} \nabla x+x \nabla r^{2}=r^{2}(1,0,0)+2 x \boldsymbol{r}$.
(ii) $\nabla \cdot\left(x r^{2} \boldsymbol{r}\right)=x r^{2} \nabla \cdot \boldsymbol{r}+\boldsymbol{r} \cdot \nabla x r^{2}=6 x r^{2}$.
(iii) Consider first component of $\nabla \times(f(r) \boldsymbol{r})$. This is

$$
\frac{\partial}{\partial y}(z f(r))-\partial \partial z(y f(r))=\frac{y z f^{\prime}(r)}{r}-\frac{y z f^{\prime}(r)}{r}=0 .
$$

Similarly for the other components, therefore the answer is $\mathbf{0}$.
8. (i) $\nabla \cdot(\boldsymbol{u} \times \boldsymbol{v})=\nabla \cdot\left(0,-z^{3}, z^{2} y\right)=2 y z$, and $\nabla \times \boldsymbol{u}=(0,2 z, 0)$, $\nabla \times \boldsymbol{v}=(0,0,0)$. Hence RHS is equal to LHS.
(ii) $\psi \boldsymbol{u}=\left(x^{2} z^{2}+y^{2} z^{2}+z^{4}, 0,0\right), \nabla \psi=(2 x, 2 y, 2 z)$, so $L H S=2 x z^{2}$ and the $R H S=(2 x, 2 y, 2 z) \cdot\left(z^{2}, 0,0\right)=2 x z^{2}$.
9. Since $x=u v$ and $y=1 / v$, we have $u=x y$ and $v=1 / y$. Hence the chain rule gives

$$
\begin{gathered}
\frac{\partial}{\partial x} \rightarrow \frac{\partial u}{\partial x} \frac{\partial}{\partial u}+\frac{\partial v}{\partial x} \frac{\partial}{\partial v} \\
=y \frac{\partial}{\partial u}=\frac{1}{v} \frac{\partial}{\partial u} \\
\frac{\partial}{\partial y} \rightarrow \frac{\partial u}{\partial y} \frac{\partial}{\partial u}+\frac{\partial v}{\partial y} \frac{\partial}{\partial v} \\
= \\
x \frac{\partial}{\partial u}-\frac{1}{y^{2}} \frac{\partial}{\partial v}=u v \frac{\partial}{\partial u}-v^{2} \frac{\partial}{\partial v}
\end{gathered}
$$

Now we can calculate (subscripts will be used to denote partial derivatives, e.g. $f_{x}=\frac{\partial f}{\partial x}$ etc.):

$$
\begin{align*}
f_{x}=\frac{1}{v} F_{u}, \quad f_{x x} & =\frac{1}{v}\left(\frac{1}{v} F_{u}\right)_{u}=\frac{1}{v^{2}} F_{u u}, \quad f_{y}=u v F_{u}-v^{2} F_{v} \tag{1}\\
f_{y y} & =\left(u v \frac{\partial}{\partial u}-v^{2} \frac{\partial}{\partial v}\right)\left(u v F_{u}-v^{2} F_{v}\right) \\
& =u^{2} v^{2} F_{u u}-2 u v^{3} F_{u v}+2 v^{3} F_{v}+v^{4} F_{v v}
\end{align*}
$$

$$
f_{x y}=\frac{1}{v}\left(u v F_{u}-v^{2} F_{v}\right)_{u}=\frac{1}{v}\left(v F_{u}+u v F_{u u}-v^{2} F_{u v}\right)
$$

Now substitute all these expressions into the equation and eliminate x, y in favour of u, v to get

$$
v^{2} F_{v v}=0 \quad \Rightarrow \quad F_{v v}=0
$$

The general solution is

$$
F(u, v)=\alpha(u) v+\beta(u) \quad \Rightarrow \quad f(x, y)=\frac{\alpha(x y)}{y}+\beta(x y)
$$

where $\alpha(\cdot)$ and $\beta(\cdot)$ are arbitrary functions of integration that can be fixed once boundary conditions are provided.
10. Use the chain rule on $g(x, y, t)=f(x t, y t)$ to find

$$
\frac{\partial g}{\partial t}=f_{x}(x t, y t) \frac{\partial}{\partial t}(x t)+f_{y}(x t, y t) \frac{\partial}{\partial t}(y t)=x f_{x}(x t, y t)+y f_{y}(x t, y t),
$$

as required.
Now if $f(x t, y t)=t^{n} f(x, y)$, we can differentiate this w.r.t t and use the result above for the LHS, i.e.

$$
x f_{x}(x t, y t)+y f_{y}(x t, y t)=n t^{n-1} f(x, y) .
$$

Now put $t=1$ to obtain the result.
To obtain the last part, differentiate g_{t} with respect to t again to get

$$
\begin{aligned}
g_{t t} & =x\left(f_{x}(x t, y t)\right)_{t}+y\left(f_{y}(x t, y t)\right)_{t} \\
& =x\left[x f_{x x}(x t, y t)+y f_{x y}(x t, y t)\right]+y\left[x f_{x y}(x t, y t)+y F_{y y}(x t, y t)\right]
\end{aligned}
$$

Also $\left(t^{n} f(x, y)\right)_{t t}=n(n-1) t^{n-2} f(x, y)$, and so equating these and setting $t=1$ gives us what we want.
Note: This can be done for functions $f: \boldsymbol{R}^{k} \rightarrow \boldsymbol{R}$ also, in a nice compact form. Denote the function $f(\boldsymbol{x})$ where $\boldsymbol{x}=\left(x_{1}, \ldots, x_{k}\right)$, and define $g(\boldsymbol{x}, t)=f(\boldsymbol{x} t)$.
Differentiating w.r.t. t we get

$$
g_{t}=x_{1} f_{x_{1}}(\boldsymbol{x} t)+\ldots+x_{k} f_{x_{k}}(\boldsymbol{x} t)=\boldsymbol{x} \cdot \nabla f(\boldsymbol{x} t) .
$$

It follows immediately by setting $t=1$ as before that for a homogeneous function $f(\boldsymbol{x} t)=t^{n} f(\boldsymbol{x})$ we have the compact formula

$$
\boldsymbol{x} \cdot \nabla f(\boldsymbol{x})=(n-1) f(\boldsymbol{x}),
$$

and higher derivatives can be taken to get higher order identities also as done by you in \boldsymbol{R}^{2}.

