M2AA2 - Multivariable Calculus. Problem Sheet 3

February 5, 2009. Prof. D.T. Papageorgiou

1. (a) Show that the centroid (\bar{x}, \bar{y}) of a closed simply connected region S in \boldsymbol{R}^{2} is given by

$$
\bar{x}=\frac{1}{2 A} \oint_{C} x^{2} d y, \quad \bar{y}=\frac{1}{2 A} \oint_{C} y^{2} d x,
$$

where A is the area of S and C is its boundary.
[Recall that the centroid of a plane region is its centre of mass when the region is regarded as a thin body of constant density.]
(b) Use the result above to verify that the centroids of the regions $S_{1}=\left\{(x, y): 0 \leq x^{2}+y^{2} \leq a^{2}\right\}$ and $S_{2}=\left\{(x, y): b^{2} \leq x^{2}+y^{2} \leq a^{2}\right\}$, are given by $(\bar{x}, \bar{y})=(0,0)$.
2. If ϕ and ψ are scalar fields, show that $\nabla \phi \times \nabla \psi$ is a solenoidal field and verify that $\frac{1}{2}(\phi \nabla \psi-$ $\psi \nabla \phi)$ is a vector potential for it.
3. Use the divergence theorem to show that

$$
\int_{V} \nabla \times \boldsymbol{u} d V=\int_{S} \boldsymbol{n} \times \boldsymbol{u} d S
$$

where V is a volume in \boldsymbol{R}^{3} bounded by a surface S with outward normal \boldsymbol{n}.
[Hint: Apply the divergence theorem to $\boldsymbol{F}=\boldsymbol{u} \times \boldsymbol{K}$ where \boldsymbol{K} is a constant vecror in \boldsymbol{R}^{3}.]
4. Consider a solenoidal vector field \boldsymbol{F} in a region V in \boldsymbol{R}^{3} which is enclosed by a surface S . If ϕ is a scalar field that takes a constant value on the surface S , show that

$$
\int_{V} \nabla \phi \cdot \boldsymbol{F} d V=0
$$

5. Evaluate $\int_{S} \boldsymbol{r} \cdot \boldsymbol{n} d S$ where S is a closed surface enclosing a volume V .
6. Verify the divergence theorem for the case when $\boldsymbol{F}=(x, 0,0)$ and V is the cube $|x| \leq a$, $|y| \leq a,|z| \leq a$.
7. The gravitational force field of a mass M is given by $\boldsymbol{F}=-\frac{G M r}{r^{3}}$, where G is a constant. Show that the flux of \boldsymbol{F} across a closed surface S is
(a) zero if the origin O lies outside S .
(b) $-4 \pi G M$ if O lies inside S .

What does this result tell us about the value of $\nabla \cdot \boldsymbol{F}$ at O ?
8. Use spherical polar coordinates

$$
x_{1}=r \sin \theta \cos \phi, \quad x_{2}=r \sin \theta \sin \phi, \quad x_{3}=r \cos \theta
$$

to evaluate the surface integrals

$$
I_{1}=\int_{S} x_{1}^{2} d S, \quad I_{3}=\int_{S} x_{3}^{2} d s
$$

where S is the spherical surface $r=a$, and verify that $I_{1}=I_{3}$. Explain why the value obtained for I_{1} is to be expected from symmetry considerations.

