M2AA2 - Multivariable Calculus. Assessed Coursework II
 March 9, 2009. Prof. D.T. Papageorgiou
 DUE March 19, 2009, BEFORE 2PM

1. (a) Use the method of images to find the two-dimensional Dirichlet Green's function for the upper half plane, i.e. solve

$$
\begin{aligned}
\nabla^{2} G & =\delta\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right), \quad-\infty<x<\infty, y>0 \\
G(x, 0) & =0 .
\end{aligned}
$$

(b) Use this Green's function to find explicitly the solution to the problem

$$
\begin{align*}
\nabla^{2} \phi & =0, \\
\phi(x, 0) & = \begin{cases}1 & \text { if }|x| \leq 1 \\
0 & \text { otherwise }\end{cases} \tag{1}
\end{align*}
$$

along with an appropriate decay condition at infinity.
(c) Use your solution to verify directly that the boundary condition (1) is satisfied (do this by considering the intervals $|x|<1, x>1$ and $x<-1$, separately), and that $\phi \rightarrow 0$ as $x^{2}+y^{2} \rightarrow \infty$.
(d) Show that the solution along the line $x=0$ is given by

$$
\phi(0, y)=\frac{2}{\pi} \tan ^{-1}(1 / y)
$$

Physically, the solution found in (b) can represent the temperature in the upper half plane due to a strip heater fixed to the wall and maintained at constant unit temperature. Show that given an integer $N \geq 2$ the temperature along $x=0$ is reduced by a factor of N relative to that of the wall at the position

$$
y_{N}=\frac{1}{\tan (\pi / 2 N)} .
$$

Hence estimate at how many heater lengths from the wall we need to move to in order to see the temperature reduced by 99% of its wall value.
2. Time-dependent heat flow in one dimension. Consider the partial differential equation for the temperature $u(x, t)$ in a rod of length L :

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\kappa \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<L, t>0 \tag{2}
\end{equation*}
$$

where $\kappa>0$ is a constant (the thermal diffusivity of the material), subject to the boundary conditions

$$
u(0, t)=0, \quad u(L, t)=0,
$$

(i.e. the ends of the rod are kept at fixed temperature). The initial condition at $t=0$ is

$$
u(x, 0)=U_{0}, \quad 0 \leq x \leq L
$$

where U_{0} is a positive constant.
(a) Use separation of variables to find all solutions of the form $u(x, t)=X(x) T(t)$ and hence show that

$$
u(x, t)=\sum_{n=1}^{\infty} s_{n} \sin \frac{n \pi x}{L} \exp \left(-n^{2} \pi^{2} \kappa t / L\right)
$$

with s_{n} to be found.
(b) Determine s_{n} and give the general solution for $u(x, t)$. Fixing $\kappa=L=1$ estimate how long it takes for the temperature to decrease by a factor of 2 from its initial value U_{0}.
3. There are some things wrong in the following reasoning. Find the mistakes and correct them. In this problem we attempt to obtain the Fourier cosine coefficients of e^{x} :

$$
\begin{equation*}
e^{x}=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L} . \tag{3}
\end{equation*}
$$

Differentiating yields

$$
e^{x}=-\sum_{n=1}^{\infty} \frac{n \pi}{L} A_{n} \sin \frac{n \pi x}{L}
$$

which is the Fourier sine series of e^{x}. Differentiating again yields

$$
\begin{equation*}
e^{x}=-\sum_{n=1}^{\infty}\left(\frac{n \pi}{L}\right)^{2} A_{n} \cos \frac{n \pi x}{L} . \tag{4}
\end{equation*}
$$

Since equations (3) and (4) give the Fourier cosine series of e^{x}, they must be identical. Thus we find

$$
A_{0}=0, \quad A_{n}=0
$$

which is obviously wrong!
By correcting the mistakes you should be able to obtain A_{0} and A_{n} without having to compute Fourier coefficients in the usual way. In any case, find the coefficients.
What would happen if instead of a cosine series we tried to construct a sine series of e^{x} in the interval $[0, L]$? [Sketch the functions to see what is going on.]

