- 1. If δ_{ij} is the Kronecker delta and x_i is a vector, evaluate
 - (a) $\delta_{ij} \frac{\partial x_i}{\partial x_j}$.
 - (b) $\delta_{ij}\delta_{ik}x_jx_k$.
 - (c) $\delta_{ij} \frac{\partial^2 \phi}{\partial x_i \partial x_j}$.
 - (d) $\delta_{ij}\delta_{jk}\delta_{ki}$.
- 2. A particle of mass m and position x_i is in rigid body rotation with angular velocity ω_i relative to the origin O (that is its velocity is given by $\boldsymbol{v} = \boldsymbol{\omega} \times \boldsymbol{x}$). Show that the angular momentum h_i (given by $\boldsymbol{h} = m\boldsymbol{x} \times \boldsymbol{v}$) can be expressed as

$$h_i = I_{ij}\omega_j$$
, where $I_{ij} = m(\delta_{ij}x_kx_k - x_ix_j)$.

3. Use tensor notation to prove the identity

$$\boldsymbol{u} imes (
abla imes \boldsymbol{u}) = rac{1}{2}
abla (|\boldsymbol{u}|^2) - (\boldsymbol{u} \cdot
abla) \boldsymbol{u}.$$

- 4. (a) If u_i and v_i are tensors of rank one (i.e. vectors) show that $\phi = u_i v_i$ is a tensor of rank zero (i.e. scalar) and that $T_i = u_k u_k v_i$ is a tensor of rank one.
 - (b) If u_i is a vector, show that $T_{ij} = \frac{\partial u_i}{\partial x_j}$ is a tensor.
- 5. A Cartesian coordinate system S' with orthogonal basis vectors e'_1, e'_2, e'_3 is obtained from $S(e_1, e_2, e_3)$ by rotation through an angle θ about the e_3 axis. Find the transformation matrix a_{ij} defined by $e'_i = a_{ij}e_j$.

If T is a tensor with components T_{ij} relative to S, calculate T'_{ij} and verify that $T'_{ii} = T_{ii}$.

- 6. Let D_{ij} be defined as: $D_{ij} = 1$ if i = j and $D_{ij} = 0$ otherwise, in any Cartesian coordinate system. Show that D_{ij} is not a tensor.
- 7. A tensor **T** of rank two has components T_{ij} given by

$$T_{11} = 4a, \qquad T_{23} = 4b, \qquad \text{other} \qquad T_{ij} = 0,$$

with respect to a Cartesian coordinate system S.

A coordinate system S' is obtained from S by rotation about the x_1 -axis through an angle $\theta = +\pi/4$. A coordinate system S'' is obtained from S' by rotation through the x'_3 -axis through an angle $\phi = +\pi/4$. Find the components of T in system S'' and verify the three identities

$$T''_{ii} = T_{ii}, \qquad T''_{ij}T''_{ij} = T_{ij}T_{ij}, \qquad T''_{ij}T''_{ji} = T_{ij}T_{ji}.$$