1. If $\delta_{i j}$ is the Kronecker delta and x_{i} is a vector, evaluate
(a) $\delta_{i j} \frac{\partial x_{i}}{\partial x_{j}}$.
(b) $\delta_{i j} \delta_{i k} x_{j} x_{k}$.
(c) $\delta_{i j} \frac{\partial^{2} \phi}{\partial x_{i} \partial x_{j}}$.
(d) $\delta_{i j} \delta_{j k} \delta_{k i}$.
2. A particle of mass m and position x_{i} is in rigid body rotation with angular velocity ω_{i} relative to the origin O (that is its velocity is given by $\boldsymbol{v}=\boldsymbol{\omega} \times \boldsymbol{x}$). Show that the angular momentum h_{i} (given by $\left.\boldsymbol{h}=m \boldsymbol{x} \times \boldsymbol{v}\right)$ can be expressed as

$$
h_{i}=I_{i j} \omega_{j}, \quad \text { where } \quad I_{i j}=m\left(\delta_{i j} x_{k} x_{k}-x_{i} x_{j}\right) .
$$

3. Use tensor notation to prove the identity

$$
\boldsymbol{u} \times(\nabla \times \boldsymbol{u})=\frac{1}{2} \nabla\left(|\boldsymbol{u}|^{2}\right)-(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}
$$

4. (a) If u_{i} and v_{i} are tensors of rank one (i.e. vectors) show that $\phi=u_{i} v_{i}$ is a tensor of rank zero (i.e. scalar) and that $T_{i}=u_{k} u_{k} v_{i}$ is a tensor of rank one.
(b) If u_{i} is a vector, show that $T_{i j}=\frac{\partial u_{i}}{\partial x_{j}}$ is a tensor.
5. A Cartesian coordinate system S^{\prime} with orthogonal basis vectors $\boldsymbol{e}_{1}^{\prime}, \boldsymbol{e}_{2}^{\prime}, \boldsymbol{e}_{3}^{\prime}$ is obtained from $S\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right)$ by rotation through an angle θ about the \boldsymbol{e}_{3} axis. Find the transformation matrix $a_{i j}$ defined by $\boldsymbol{e}_{i}^{\prime}=a_{i j} \boldsymbol{e}_{j}$.
If \boldsymbol{T} is a tensor with components $T_{i j}$ relative to S, calculate $T_{i j}^{\prime}$ and verify that $T_{i i}^{\prime}=T_{i i}$.
6. Let $D_{i j}$ be defined as: $D_{i j}=1$ if $i=j$ and $D_{i j}=0$ otherwise, in any Cartesian coordinate system. Show that $D_{i j}$ is not a tensor.
7. A tensor \boldsymbol{T} of rank two has components $T_{i j}$ given by

$$
T_{11}=4 a, \quad T_{23}=4 b, \quad \text { other } \quad T_{i j}=0,
$$

with respect to a Cartesian coordinate system S.
A coordinate system S^{\prime} is obtained from S by rotation about the x_{1}-axis through an angle $\theta=+\pi / 4$. A coordinate system $S^{\prime \prime}$ is obtained from S^{\prime} by rotation through the x_{3}^{\prime}-axis through an angle $\phi=+\pi / 4$. Find the components of \boldsymbol{T} in system $S^{\prime \prime}$ and verify the three identities

$$
T_{i i}^{\prime \prime}=T_{i i}, \quad T_{i j}^{\prime \prime} T_{i j}^{\prime \prime}=T_{i j} T_{i j}, \quad T_{i j}^{\prime \prime} T_{j i}^{\prime \prime}=T_{i j} T_{j i}
$$

