M2AA2 - Multivariable Calculus. Problem Sheet 4. Solutions.

 Professor D.T. Papageorgiou1. Need to show that $\iint_{S}(\nabla \times \boldsymbol{F}) \cdot \boldsymbol{n} d S=\oint_{C} \boldsymbol{F} \cdot d \boldsymbol{s}$. First, calculate $\nabla \times \boldsymbol{F}=(0,0,1)$ and on S the normal is $\boldsymbol{n}=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$ (this is the outward pointing normal to S written in terms of spherical polars); therefore, $(\nabla \times \boldsymbol{F}) \cdot \boldsymbol{n}=\cos \theta$. The integral (i.e. the l.h.s. of the theorem) becomes

$$
\iint_{S}(\nabla \times \boldsymbol{F}) \cdot \boldsymbol{n} d S=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \cos \theta \sin \theta d \theta d \varphi=\int_{0}^{2 \pi} \frac{1}{2} d \varphi=\pi .
$$

The r.h.s. is a line integral over a circle of unit radius in the $x y$-plane. This is $\oint_{C} \boldsymbol{F} \cdot d \boldsymbol{s}=\oint_{C}(3 x-y) d x=\int_{0}^{2 \pi}(3 \cos \varphi-\sin \varphi)(-\sin \varphi) d \varphi=\left[-\frac{3}{2} \sin ^{2} \varphi\right]_{0}^{2 \pi}+\int_{0}^{2 \pi} \sin ^{2} \varphi d \varphi=\pi$.
2. The required area is in the first quadrant and in terms of the new variables (u, v) it is the region \bar{S} bounded by $-1 \leq u \leq 1,1 \leq v \leq 2$. The only other thing needed is the Jacobian of the transformation, which we compute to be

$$
\frac{\partial(u, v)}{\partial(x, y)}=-4\left(x^{2}+y^{2}\right) \quad \Rightarrow \quad d x d y=\frac{d u d v}{4\left(x^{2}+y^{2}\right)}
$$

therefore

$$
I=\iint_{\bar{S}} \frac{\left(x^{2}+y^{2}\right)^{2}}{4} d u d v=\int_{2}^{4} \int_{-1}^{1} \frac{\left(u^{2}+v^{2}\right)}{4} d u d v=\int_{2}^{4} \frac{1}{4}\left(\frac{2}{3}+2 v^{2}\right)^{2} d v=\frac{29}{3} .
$$

3. We have

$$
\boldsymbol{e}_{r}=\cos \theta \boldsymbol{i}+\sin \theta \boldsymbol{j}, \quad \boldsymbol{e}_{\theta}=-\sin \theta \boldsymbol{i}+\cos \theta \boldsymbol{j}, \quad \boldsymbol{e}_{z}=\boldsymbol{k} .
$$

Solve to get

$$
\boldsymbol{i}=\cos \theta \boldsymbol{e}_{r}-\sin \theta \boldsymbol{e}_{\theta}, \quad \boldsymbol{j}=\sin \theta \boldsymbol{e}_{r}+\cos \theta \boldsymbol{e}_{\theta}, \quad \boldsymbol{k}=\boldsymbol{e}_{z} .
$$

Now, since $x=r \cos \theta, y=r \sin \theta, z=z$ we get

$$
\boldsymbol{F}=(r \sin \theta \cos \theta+z \sin \theta) \boldsymbol{e}_{r}+\left(-r \sin ^{2} \theta+z \cos \theta\right) \boldsymbol{e}_{\theta}+r \cos \theta \boldsymbol{e}_{z} .
$$

Now calculate $\nabla \cdot \boldsymbol{F}$ using the formula for cylindrical polars, to confirm that it is zero.
4. We have

$$
d x_{1}=u d u-v d v, \quad d x_{2}=v d u+u d v, \quad d x_{3}=d z,
$$

so that

$$
d s^{2}=d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}=\left(u^{2}+v^{2}\right) d u^{2}+\left(u^{2}+v^{2}\right) d v^{2}+d z^{2} \equiv h_{1}^{2} d u^{2}+h_{2}^{2} d v^{2}+h_{3}^{2} d z^{2} .
$$

Hence we identify the scale factors as

$$
h_{1}=\sqrt{u^{2}+v^{2}}, \quad h_{2}=\sqrt{u^{2}+v^{2}}, \quad h_{3}=1 .
$$

We know that

$$
\begin{gathered}
\nabla^{2} \phi=\frac{1}{h_{1} h_{2} h_{3}}\left(\frac{\partial}{\partial u}\left(\frac{h_{2} h_{3}}{h_{1}} \frac{\partial \phi}{\partial u}\right)+\left(\frac{h_{1} h_{3}}{h_{2}} \frac{\partial \phi}{\partial v}\right)+\left(\frac{h_{1} h_{2}}{h_{3}} \frac{\partial \phi}{\partial w}\right)\right) \\
=\frac{1}{\left(u^{2}+v^{2}\right)}\left(\frac{\partial^{2} \phi}{\partial u^{2}}+\frac{\partial^{2} \phi}{\partial v^{2}}\right)+\frac{\partial^{2} \phi}{\partial z^{2}} .
\end{gathered}
$$

5. The Laplacian in spherical polars (r, θ, φ) leaving out any φ dependence (since the solutions we are constructing have dependence $\phi(r, \theta)$ is

$$
\nabla^{2} \phi=\frac{1}{r^{2} \sin \theta}\left(\frac{\partial}{\partial r}\left(r^{2} \sin \theta \frac{\partial \phi}{\partial r}\right)+\frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \phi}{\partial \theta}\right)\right) .
$$

Now substitute $\phi_{1}=r \cos \theta$ and $\phi_{2}=\frac{1}{r^{2}} \cos \theta$ to show the result.
6. For the general solution in (i) $0<r<1$ which is finite we have

$$
\phi=c_{0}+\sum_{1}^{\infty} r^{n}\left(c_{n} \cos n \theta+s_{n} \sin n \theta\right),
$$

while for (ii) $1<r<\infty$ the solution which is finite and single-valued is

$$
\phi=c_{0}+\sum_{1}^{\infty} r^{-n}\left(c_{n} \cos n \theta+s_{n} \sin n \theta\right) .
$$

The constants c_{i}, s_{i} are different in each formula.
For the problem in $a<r<b$ we cannot throw the logarithm out now. In fact the general solution is of the form

$$
\phi=c_{0}+d_{0} \log (r)+\sum_{1}^{\infty} r^{-n}\left(c_{n} \cos n \theta+s_{n} \sin n \theta\right)
$$

and clearly all the $c_{i}, s_{i}, i \geq 1$ are zero since the solution is independent of θ (we know this because the boundary conditions do not have any θ dependence). To satisfy the boundary conditions we need

$$
\begin{aligned}
\phi(a, \theta) & =1 \quad \Rightarrow \quad c_{0}+\log (a)=1, \\
\phi(b, \theta) & =2 \Rightarrow c_{0}+\log (b)=2 .
\end{aligned}
$$

Solve for c_{0} and d_{0} to find the solution

$$
\phi=1-\frac{\log (a)}{\log (b / a)}+\frac{\log (r)}{\log (b / a)}
$$

