M2AA2 - Multivariable Calculus. Problem Sheet 8

March 23, 2009. Prof. D.T. Papageorgiou

1. In each of the problems that follow, find a stationary function for the integral satisfying the given conditions at the end points of the interval:
(a) $\int_{1}^{2} \frac{1}{x^{3}}\left(y^{\prime}\right)^{2} d x, y(1)=0, y(2)=-3$.
(b) $\int_{0}^{1}\left[\frac{1}{2}\left(y^{\prime}\right)^{2}+y y^{\prime}+y^{\prime}+y\right] d x, y(0)=0, y(1)=4$.
2. Find a stationary function for $\int_{x_{0}}^{x_{1}}(1 / x) \sqrt{1+\left(y^{\prime}\right)^{2}} d x$ which passes through the points (x_{0}, y_{0}) and $\left(x_{1}, y_{1}\right)$.
3. (a) Let $I=\int_{x_{0}}^{x_{1}} f\left(x, y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}\right) d x$. Show that a stationary function for this integral must satisfy

$$
\frac{\partial f}{\partial y}-\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}+\frac{d^{2}}{d x^{2}} \frac{\partial f}{\partial y^{\prime \prime}}-\frac{d^{3}}{d x^{3}} \frac{\partial f}{\partial y^{\prime \prime \prime}}=0
$$

(b) For the integral $I=\int_{x_{0}}^{x_{1}} f\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}\right) d x$ show that the Euler equation is

$$
\frac{\partial f}{\partial y}-\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}+\frac{d^{2}}{d x^{2}} \frac{\partial f}{\partial y^{\prime \prime}}-\ldots+(-1)^{n} \frac{d^{n}}{d x^{n}} \frac{\partial f}{\partial y^{(n)}}=0
$$

4. Find the extremals for $\int_{x_{0}}^{x_{1}}\left[a\left(y^{\prime}\right)^{2}+2 b y y^{\prime}+c y^{2}\right] d x$, where a, b, c are given continuously differentiable functions of x. Prove that Euler's equation is a linear differential equation of the second order. Why is is that when b is constant this constant does not enter into the differential equation?
5. Find a stationary curve for the integral $\int_{0}^{1}\left[16 y^{2}-\left(y^{\prime \prime}\right)^{2}+x^{2}\right] d x$ satisfying the conditions $y(0)=0, y(1)=4, y^{\prime}(0)=-1, y^{\prime}(1)=2$.
6. Find Euler's equations so that the integral $I(\phi)=\int_{x_{0}}^{x_{1}} F d x$ is stationary for the following cases (here the function $\phi \equiv \phi(x, y)$):
(a) $F=\left(\phi_{x x}+\phi_{y y}\right)^{2}=\left(\nabla^{2} \phi\right)^{2}$.
(b) $F=\left(\nabla^{2} \phi\right)^{2}+\left(\phi_{x x} \phi_{y y}-\phi_{x y}^{2}\right)$.
7. Find Euler's equations for the isoperimetric problem in which

$$
\int_{x_{0}}^{x_{1}}\left[a\left(u^{\prime}\right)^{2}+2 b u u^{\prime}+c u^{2}\right] d x
$$

is to be stationary subject to the condition

$$
\int_{x_{0}}^{x_{1}} u^{2} d x=1
$$

8. Show that the geodesics on a cylinder are helices.
9. Use the method of constrained optimisation to show that the solution to the classical isoperimetric problem (i.e. given the length of a closed curve, maximise the area it encloses) is a circle.
