M2AA2 - Multivariable Calculus. Problem Sheet 5 March 2, 2009. Prof. D.T. Papageorgiou

1. Consider the following curvilinear coordinate system defined in terms of the cartesian system:

$$x_1 = \frac{1}{2}(u^2 - v^2), \qquad x_2 = uv, \qquad x_3 = z_3$$

with $u \ge 0$.

Find the scale factors h_1 , h_2 and h_3 of the transformation and express the unit vectors e_1 , e_2 and e_3 of the curvilinear coordinate system in terms of the Cartesian basis vectors i, j, k.

2. The following vector field \boldsymbol{F} is given in terms of the curvilinear coordinate system (u, v, z) given above

$$\mathbf{F} = u(u^2 + v^2)^{3/2} \, \mathbf{e}_1 - v(u^2 + v^2)^{3/2} \, \mathbf{e}_2$$

Show that

- (a) $\nabla \cdot \boldsymbol{F} = 4(u^2 v^2).$
- (b) $\nabla \times \boldsymbol{F} = -8uv \, \boldsymbol{e}_3.$
- (c) Show that in cartesian form $\mathbf{F} = 4(x_1^2 + x_2^2) \mathbf{i}$, and hence confirm your answers to parts (a) and (b) by doing the calculations in cartesian coordinates.
- 3. The temperature T in the region $a \leq r \leq b$ (where $r^2 = x^2 + y^2 + z^2$) satisfies Laplace's equation $\nabla^2 T = 0$. The spherical surface at r = b is insulated so that $\partial T/\partial r = 0$ at r = b. The inner surface is maintained at the steady temperature $T = T_0 z/a$ so that $T = T_0 \cos \theta$ at r = a, where (r, θ, φ) are spherical polar coordinates. Find T in the region $a \leq r \leq b$.

[Hint: From the results of problem 5 of sheet 4, we know that $r \cos \theta$ and $r^{-2} \cos \theta$ satisfy Laplace's equation.]

- 4. Show that the solution you found in question 3 above is unique.
- 5. A vector field $\boldsymbol{B}(\boldsymbol{x})$ is parallel to the normals to a family of surfaces $f(\boldsymbol{x}) = constant$. Show that

$$\boldsymbol{B} \cdot (\nabla \times \boldsymbol{B}) = 0.$$

6. Consider the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + z^2 = 1$, where $a > \sqrt{2}$ and $b > \sqrt{2}$. Let S be the part of the surface of the ellipsoid defined by $0 \le x \le 1$, $0 \le y \le 1$ and $z \ge 0$. Find the surface element $\mathbf{n}dS$ of the surface S. The vector field \mathbf{F} is defined by $\mathbf{F} = (-y, x, 0)$. Explain why $\int_S \mathbf{F} \cdot \mathbf{n}dS = 0$ in the case a = b. Find $\int_S \mathbf{F} \cdot \mathbf{n}dS$ in the case $a \ne b$.

7. Let $F(x) = (x^3 + 3y + z^2, y^3, x^2 + y^2 + 3z^2)$, and let S be the *open* surface

$$1 - z = x^2 + y^2, \qquad 0 \le z \le 1.$$

Use the divergence theorem (and cylindrical polar coordinates) to evaluate $\int_{S} \boldsymbol{F} \cdot \boldsymbol{n} dS$.

8. By applying the divergence theorem to the vector field $\mathbf{k} \times \mathbf{A}$, where \mathbf{k} is an arbitrary constant vector and $\mathbf{A}(\mathbf{x})$ is a vector field, show that

$$\int_{V} \nabla \times \boldsymbol{A} dV = -\int_{S} \boldsymbol{A} \times \boldsymbol{n} dS,$$

where the surface S encloses the volume V.

Verify this result when S is the sphere $|\mathbf{x}| = R$ and $\mathbf{A} = (z, 0, 0)$ in cartesian coordinates.

9. A solid volume V has mass density $\rho(\boldsymbol{x})$. The total mass M of V is then given by $M = \int_V \rho(\boldsymbol{x}) dV$. The centre of mass of V is defined to be

$$\hat{\boldsymbol{x}} = \frac{1}{M} \int_{V} \boldsymbol{x} \rho(\boldsymbol{x}) dV$$

Find the centre of mass of (i) the solid upper hemisphere $x^2 + y^2 + z^2 \leq R^2$, $z \geq 0$ with constant mass density $\rho(\mathbf{x}) = \rho_0$, and (ii) the cone which has the unit circle in the xy-plane as a base, its tip at (0, 0, h) (h > 0) and has a mass density $\rho(\mathbf{x})$ proportional to the distance from its base.

10. A fluid flow has the velocity vector $\boldsymbol{u} = (0, 0, z + a)$ in cartesian coordinates, where a is a constant. Calculate the volume flux of fluid flowing across the open hemispherical surface $r = a, z \ge 0$, and also the volume flux across the disc $z = 0, r \le 0$. Verify that the divergence theorem holds.

[The volume flux of fluid across a surface S is defined to be $\int_{S} \boldsymbol{u} \cdot \boldsymbol{n} dS$ where \boldsymbol{u} is the velocity field.]