M2AA2 - Multivariable Calculus. Problem Sheet 1
January 15, 2009. Prof. D.T. Papageorgiou

1. If \boldsymbol{A} is a constant vector field, calculate the gradients of the following scalar fields:
(i) $\boldsymbol{A} \cdot \boldsymbol{r}$
(ii) r^{n}
(iii) $\boldsymbol{r} \cdot \nabla(x+y+z)$
[Here $r=|\boldsymbol{r}|$ where $\boldsymbol{r} \in \boldsymbol{R}^{3}$.]
2. (a) Prove the identiry $\nabla(\phi \psi)=\phi \nabla \psi+\psi \nabla \phi$.
(b) Prove that $\nabla(f(r))=\frac{f^{\prime}(r)}{r} \boldsymbol{r}$, where $f^{\prime}=\frac{d f}{d r}$ and $\boldsymbol{r} \in \boldsymbol{R}^{n}$.
(c) Show that $\nabla^{2} f(r)=f^{\prime \prime}+\frac{(n-1)}{r} f^{\prime}$ where $f(r)$ is the function in item (b) above.
(d) Find the solutions of the symmetric Laplacian in \boldsymbol{R}^{n}. What happens when $n=2$?
3. If $\phi=x^{2} y+z^{2} x$ and P is the point $(1,1,2)$, find the directional derivative of ϕ at P in the direction $(1,2,3)$.
4. Find the equation of the tangent plane to the surface $x^{2}+2 y^{2}-z^{2}-8=$ 0 at the point $P(1,2,1)$. A second surface $x^{2}+y^{2}+z^{2}-6=0$ also contains the point P. Find the angle between the two surfaces at the point P.
5. Obtain the equation of the plane that is tangent to the surface $z=$ $3 x^{2} y \sin (\pi x / 2)$ at the point $x=y=1$.
Take North to be the direction $(1,0,0)$ and East to be the direction $(0,1,0)$. In which direction will a marble roll if placed on the surface at $x=1, y=\frac{1}{2}$?
6. The ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ has foci at $F_{1}(-a e, 0)$ and $F_{2}(a e, 0)$ where e is the eccentricity. Show that for each point $P(x, y)$ on the ellipse the lines $P F_{1}, P F_{2}$ make equal angles with the tangent to the ellipse at P. [This implies that any light ray directed from one focus is reflected by a mirrored ellipse to the other focus. How does the time taken for the reflected path $F_{1} P F_{2}$ depend on P ?]
7. If $\phi=x r^{2}, \boldsymbol{r}=(x, y, z)$ and $f(r)=$ arbitrary function of $r=|\boldsymbol{r}|$, evaluate
(i) $\nabla \phi$
(ii) $\nabla \cdot(\phi \boldsymbol{r})$
(iii) $\nabla \times(f(r) \boldsymbol{r})$
8. If $\boldsymbol{u}=\left(z^{2}, 0,0\right), \boldsymbol{v}=(x, y, z)$ and $\psi=r^{2}$, verify the identities
(a) $\nabla \cdot(\boldsymbol{u} \times \boldsymbol{v})=\boldsymbol{v} \cdot(\nabla \times \boldsymbol{u})-\boldsymbol{u} \cdot(\nabla \times \boldsymbol{v})$.
(b) $\nabla \cdot(\psi \boldsymbol{u})=\nabla \psi \cdot \boldsymbol{u}+\psi \nabla \cdot \boldsymbol{u}$.
9. Show that the change of variables $x=u v, y=1 / v$ reduces the equation

$$
\begin{equation*}
x^{2} \frac{\partial^{2} f}{\partial x^{2}}-2 x y \frac{\partial^{2} f}{\partial x \partial y}+y^{2} \frac{\partial^{2} f}{\partial y^{2}}+2 y \frac{\partial f}{\partial y}=0 \tag{1}
\end{equation*}
$$

to

$$
\frac{\partial^{2} F}{\partial v^{2}}=0
$$

where $f(x, y)=F(u(x, y), v(x, y))$. Hence find the general solution of (1).
10. Let $f(x, y)$ be a given function and let $g(x, y, t)=f(x t, y t)$. Show that

$$
\frac{\partial g}{\partial t}=x f_{x}(x t, y t)+y f_{y}(x t, y t),
$$

where the subscript denotes the partial derivative, e.g. $f_{x}(x, y)=$ $\frac{\partial f(x, y)}{\partial x}$.
If $f(x, y)$ is homogeneous of degree n, i.e. $f(x t, y t)=t^{n} f(x, y)$ deduce Euler's theorem

$$
x f_{x}(x, y)+y f_{y}(x, y)=n f(x, y) .
$$

Show also that $x^{2} f_{x x}(x, y)+2 x y f_{x y}(x, y)+y^{2} f_{y y}(x, y)=n(n-1) f(x, y)$.

