UNIVERSITY OF LONDON

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

BSc/MSci EXAMINATION (MATHEMATICS) MAY - JUNE 2008

This paper is also taken for the relevant examination for the Associateship

M2AA2 MULTIVARIABLE CALCULUS

DATE: Thursday, 15 May 2008
TIME: $2.00 \mathrm{pm}-4.00 \mathrm{pm}$

Credit will be given for all questions attempted, but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. (a) A vector function \mathbf{F} is defined as

$$
\mathbf{F}=(x+2 y+a z, b x-3 y-z, 4 x+c y+2 z)
$$

is this function invertible when $c=6, b=-2, a=0$?
(b) Find the tangent plane to the surface

$$
\frac{x^{2}}{2}-\frac{3 y^{2}}{2}+z^{2}+2 x y+4 x z-y z=5
$$

at $(1,1,1)$.
(c) Let $\hat{\mathbf{p}}$ be a unit vector and

$$
\frac{\partial \phi}{\partial p}=\hat{\mathbf{p}} \cdot \nabla \phi
$$

be the directional derivative of ϕ with respect to $\hat{\mathbf{p}}$. In what direction from the point $(1,1,1)$ is the directional derivative of a function ψ defined as

$$
\psi=\frac{x^{2}}{2}-\frac{3 y^{2}}{2}+z^{2}+2 x y+4 x z-y z-5
$$

a maximum? What is the magnitude of the maximum?
(d) Let P be the path connecting $(0,0,0)$ and $(1,1,1)$ following the parametric curve $x=y=t, z=t^{2}$ for $0 \leq t \leq 1$. Evaluate the integral

$$
\int_{P} \mathbf{F} . d \mathbf{r} .
$$

(e) Find values of a, b, c such that there exists a scalar potential ϕ with $\mathbf{F}=\nabla \phi$, and find ϕ. Using these values of a, b, c determine

$$
\int_{P} \mathbf{F} . d \mathbf{r}
$$

where P is the straight line connecting $(0,0,0)$ to $(1,1,1)$.
(f) If ϕ is any solution of Laplace's equation show that $\nabla \phi$ is both irrotational and solenoidal, i.e. the curl of $\nabla \phi$ and the divergence of $\nabla \phi$ are both zero. Show that the specific function ϕ found in part (e) is harmonic.
2. (a) State without proof Green's theorem in the plane where C is a simple closed curve in the plane enclosing an area (surface) A.
Using Green's theorem find an expression for the area of a closed curve. Using your expression find the area of a triangle with vertices at $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ in the x, y plane. Show that the area is given by the determinant

$$
A=\frac{1}{2} \operatorname{det}\left(\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right) .
$$

(b) State without proof the divergence theorem satisfied by a differentiable function \mathbf{F} in a simply connected volume V bounded by a surface S.
Using the divergence theorem evaluate

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S
$$

where $\mathbf{F}=(x-y z, y+x z, x y-2)$ and S is the surface given by the intersection of two cylinders $x^{2}+y^{2}=a^{2}$ and $x^{2}+z^{2}=a^{2}$.
3. (a) Consider the functional J :

$$
J=\int_{x_{1}}^{x_{2}} f\left(y_{x x}, y_{x}, y, x\right) d x
$$

and deduce the Euler equation that f must satisfy for this functional to take extremal values. Here

$$
y_{x x}=\frac{d^{2} y}{d x^{2}}, y_{x}=\frac{d y}{d x}
$$

and you may assume that both y and y_{x} are fixed at the end-points, $x=x_{1}$ and $x=x_{2}$.
(b) Consider the following problem posed in the (x, y) plane. Given two points x_{1} and $x_{2}\left(x_{2}>x_{1}\right)$ on the x-axis and an arc-length $L\left(\frac{\pi}{2}\left(x_{2}-x_{1}\right)>\right.$ $L>x_{2}-x_{1}$), find the shape of the curve of length L joining x_{1} with x_{2} which, together with the x-axis, encloses the maximal area. The curve L is assumed to lie entirely in the x, y plane.
You may use the functional

$$
J=\int_{x_{1}}^{x_{2}}\left(y+\lambda \sqrt{1+y_{x}^{2}}\right) d x
$$

Justify its use and comment upon any deficiencies or limitations that it may have.
4. (a) Consider the wave equation for $u(x, t)$

$$
u_{t t}=u_{x x} .
$$

By rewriting this as a system of two first order partial differential equations deduce the characteristics are $x-t=$ constant and $x+t=$ constant. Thence the general solution is

$$
u(x, t)=\frac{1}{2}(f(x-t)+g(x+t))
$$

for arbitrary functions f and g.
(b) Show that the surface defined by $z=u(x, y)$ cuts the family of surfaces $f(x, y, u)=c$ (where c is an arbitrary constant) orthogonally provided u satisfies the first order partial differential equation

$$
\frac{\partial f}{\partial x} \frac{\partial u}{\partial x}+\frac{\partial f}{\partial y} \frac{\partial u}{\partial y}=\frac{\partial f}{\partial u} .
$$

Hence find the surface that cuts the family

$$
\frac{u(x+y)}{(3 u+1)}=c
$$

orthogonally and passes through $x^{2}+y^{2}=1, u=1$.

