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Metric spaces

Definition
Consider a set X , and a distance function d : X × X → R
satisfying

1 d(x , y) = d(y , x) (symmetric),
2 d(x , y) = 0 ⇔ x = y
3 d(x , y) + d(y , z) ≥ d(x , z) (triangle inequality)

for all x , y , z ∈ X . Then (X ,d) is called a metric space.

Note that it follows from the above prescribed conditions, that
the distance function is positive definite: d(x , y) ≥ 0.



Practical matters 1. Introduction 2. Linear autonomous ODEs 3. Contractions Existence and uniqueness

Metric spaces

We define the open r -ball at x ∈ X as

B(x , r) := {y ∈ X | d(x , y) < r}.

A set A ⊂ X is called bounded if it is contained in an r -ball for
some r <∞, and open if for all x ∈ A there exists an r such
that B(x , r) ⊂ A. The interior of a set is the union of all its open
subsets. Any open subset of X containing x is called a
neighbourhood of x ∈ X . A point x ∈ X is a boundary point of a
subset A ⊂ X if for all neighbourhoods U of x , we have
U ∩ A 6= ∅ and U \ A 6= ∅. The boundary ∂A of A ⊂ X is the set
of all boundary points of A. The closure of A, is defined as the
set

Ā := {x ∈ X | B(x , r) ∩ A 6= ∅, ∀r > 0}.

A set A is closed is A = Ā, and A ⊂ X is dense in X if Ā = X . A
set A is nowhere dense if its closure has empty interior.
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Metric spaces

A point x ∈ X is called an accumulation point of a set A ⊂ X if
all balls B(x , ε) intersect A. The set of accumulation points of A
is called the derived set A′. A set A is closed if A′ ⊂ A and
Ā = A ∪ A′. A is called perfect if A = A′.
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Metric spaces

We say that a sequence {xn}n∈N converges (as n→∞) if
∀ε > 0 there exists N ∈ N such that ∀n ≥ N we have
d(xn, x) < ε. We say that two sequences {xn}n∈N and {yn}n∈N
converge exponentially (or with exponential speed) to each
other if d(xn, yn) < cdn for some c > 0 and 0 ≤ d < 1. The
sequence is a Cauchy sequence if ∀ ε > 0 there exists N ∈ N
such that d(xi , xj) < ε whenever i , j ≥ N.
A metric space is called complete if every Cauchy sequence
converges in it.
Examples of complete metric spaces are Rn with the (usual)
Euclidean metric, and all closed subsets of Rn with this metric.
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The Contraction Mapping Theorem

Definition (Contraction)
A map F : X → X , where (X ,d) is a metric space, is a
contraction if there exists K < 1 such that

d(F (x),F (y)) ≤ Kd(x , y), ∀x , y ∈ X . (10)

A condition of the type (10) is called a Lipschitz condition,
where K ≥ 0 is called the Lipschitz constant. Contractions are
thus Lipschitz maps with a Lipschitz constant that is smaller
than 1.
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The Contraction Mapping Theorem

We now formulate the central result about contractions.

Theorem (Contraction mapping theorem)
Let X be a complete metric space, and F : X → X be a
contraction. Then F has a unique fixed point, and under the
action of iterates of F : X → X, all points converge with
exponential speed to it.
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Proof of the Contraction Mapping Theorem

Iterating d(F (x),F (y)) ≤ Kd(x , y) gives

d(F n(x),F n(y)) ≤ K nd(x , y), (11)

with x , y ∈ X and n ∈ N. Thus (F n(x))n∈N is a Cauchy sequence,
because with m > n we have

d(F m(x),F n(x)) ≤
m−n−1∑

k=0

d(F n+k+1(x),F n+k (x))

≤
m−n−1∑

k=0

K n+k d(F (x), (x)) ≤ K n

1− K
d(F (x), x)

and K n → 0 as n→∞. In the last step we used the fact that with
0 ≤ K < 1 it follows that

m−n−1∑
k=0

K k ≤
∞∑

k=0

K k =
1

1− K
.

Thus the limit limn→∞ F n(x) exists because Cauchy sequences
converge in X . We denote the limit x0.
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Proof of the Contraction Mapping Theorem

By (11) under iteration by F all points in X converge to the
same point as limn→∞ d(F n(x),F n(y)) = 0 for all x , y ∈ X so
that if x converges to x0 then so does any y ∈ X .
It remains to be shown that x0 is a fixed point of F : F (x0) = x0.
Using the triangle inequality we have

d(x0,F (x0)) ≤ d(x0,F n(x)) + d(F n(x),F n+1(x))

+d(F n+1(x),F (x0))

≤ (1 + K )d(x0,F n(x)) + K nd(x ,F (x)),

for all x ∈ X and n ∈ N. The right-hand-side of this inequality
tends to zero as n→∞, and hence F (x0) = x0.
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The derivative test

Proposition

Let I ⊂ R is a closed bounded interval, and F : I → I a
continuously differentiable (C1) function with |F ′(x)| < 1 for all
x ∈ I. Then F is a contraction.

Proof.
First we show that if |F ′(x)| ≤ K then F is Lipschitz with
Lipschitz constant K . By the Mean Value Theorem, for any two
points x , y ∈ I there exists a c between x and y such that

d(F (x),F (y)) = |F (x)− F (y)| = |F ′(c)(x − y)|
= |F ′(c)|d(x , y) ≤ Kd(x , y).

At some point x0 ∈ I the maximum of |F ′(x)| will be attained
since F is continuous, and |F ′(x0)| < 1.
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The derivative test

Example (Fibonacci’s rabbits)
Leonardo Pisano, better known as Fibonacci, tried to
understand how many pairs of rabbits can be grown from one
pair in one year. He figured out that each pair breads a pair
every month, but a newborn pair only breads in the second
month after birth. Let bn denote the number of rabbit pairs at
time n. Let b0 = 1 and in the firts month they bread one pair so
b1 = 2. At time n = 2, again one pair is bread (from the one
that were around at time n = 1, the other one does not yet have
the required age to bread). Hence, b2 = b1 + b0. Subsequently,
bn+1 = bn + bn−1. Expecting the growth to be exponential we
would like to see how fast these number grow, by calculating
an = bn+1/bn. Namely, if bn → cdn as n→∞ for some c,d
then bn+1/bn → d .
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The derivative test

Example (cont)
We have

an+1 = bn+2/bn+1 =
1
an

+ 1.

Thus {an}n∈N is the orbit of a0 = 1 of the map g(x) = 1/x + 1.
We have g′(x) = −x−2. Thus g is not a contraction on (0,∞).
But we note that a1 = 2 and consider the map g on the closed
interval [3/2,2]. We have g(3/2) = 5/3 > 3/2 and g(2) = 3/2.
Hence g([3/2,2]) ⊂ [3/2,2]. Furthermore, fro x ∈ [3/2,2] we
have |g′(x)| = 1/x2 ≤ 4/9 < 1 so that g is a contraction on
[3/2,2]. Hence, by the contraction mapping theorem, there
exists a unique fixed point, so limn→∞ an exists. The solution is
a fixed point of g(x), yielding x2 − x − 1 = 0. The only positive
root of this equation is x = (1 +

√
5)/2.
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Newton’s method

Finding the roots (preimages of zero) of a function F : R→ R is
difficult in general. Newton’s method is an approach to find
such roots through iteration. The idea is rather straight forward.
Suppose x0 is a guess for a root. We would like to improve our
guess by chosing an improved approximation x1. We write the
first order Taylor expansion of F at x1 in terms of our knowledge
about F at x0: F (x1) = F (x0) + F ′(x0)(x1 − x0). By setting
F (x1) = 0 (our aim), we obtain from the Taylor expansion that

x1 = x0 − F (x0)/F ′(x0) =: G(x0). (12)
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Newton’s method

We note that a fixed point y of G corresponds to a root of F if
F ′(y) 6= 0. We call a fixed point y of a differentiable map G
superattracting if G′(y) = 0. We have

Proposition
If |F ′(x)| > δ for some δ > 0 and |F ′′(x)| < M for some M <∞
on a neighbourhood of a root r (satisfying F (r) = 0), then r is a
superattracting fixed point of G (cf (12)).

Proof.

We observe that G′(x) = F (x)F ′′(x)/(F ′(x))2. Note that G is a
contraction on a neighbourhood of r .
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Newton’s method

There is a higher dimensional version of this result, which requires us
to introduce the notion of the derivative DF of a map F : Rm → Rm:

DF (x)y = lim
ε→0

F (x + εy)− F (x)

ε
.

Making a Taylor expansion of F in ε, and denoting F = (F1, . . . ,Fm)
where Fi denotes the i th component of the map we obtain

Fi (x + εy) = Fi (x) + ε∇Fi (x) · y + o(ε),

yielding that (DF (x)y)i = ∇Fi (x) · y . In other words, DF is a linear
map from Rm to Rm which we may represent by the so-called
Jacobian matrix

DF (x) =


∂F1
∂x1

(x) · · · ∂F1
∂xm

(x)
...

...
∂Fm
∂x1

(x) · · · ∂Fm
∂xm

(x)

 .

where xi denotes the i th component of the vector x = (x1, . . . , xm).
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Newton’s method

For this derivation to be meaningful, we need the first derivative of Fi
with respect to xj for all i , j = 1, . . .m to exist. If one of these does not
exist then the map F is not differentiable.
For completeness, we now state the derivative test in Rm without
proof. Recall that a strictly convex set C ⊂ Rn is a set C such that for
all a,b ∈ C̄, the line segment with endpoints a,b is entirely contained
in C, except possibly for one or both endpoints. Also, let the norm
||A|| of a linear map A is defined by ||A|| := max|v |=1|A(v)|.

Theorem

If C ⊂ Rn is an open strictly convex set, C̄ its closure, F : C̄ → Rn

differentiable on C and continuous on C̄ with ||DF || ≤ K < 1 on C,
then F has a unique fixed point x0 ∈ C̄ and d(F n(x), x0) ≤ K nd(x , x0)
for every x ∈ C̄.

We note that this result is in agreement with the fact that equilibria of
linear autonomous ODEs with all eigenvalues having negative real
part are asymptotically stable (with exponential convergence).
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The Inverse and Implicit Function Theorems

The inverse function theorem says that if a differentiable map
has invertible derivative at some point, then the map is
invertible near that point. It is thus related to "linearizability": if
the linearization of a map in a point is invertible, then so is the
nonlinear map in a neighbourhood of this point.
We first consider the simplest version of the inverse function
theorem, in R.

Theorem (Inverse function theorem in R)

Suppose I ⊂ R is an open interval and F : I → R is a
differentiable function. If a is such that F ′(a) 6= 0 and F ′ is
continuous at a, then F is invertible on a neighbourhood U of a
and for all x ∈ U we have (F−1)′(y) = 1/F ′(x), where
y = F (x).

NB: if F is Cr then it can be shown that F−1 is Cr as well.
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The Inverse and Implicit Function Theorems

Proof: The proof is by application of the contraction mapping
theorem. We consider the map

φy (x) = x +
y − F (x)

F ′(a)

on I. Fixed points of φy are solutions of our problem since φy (x) = x if
and only if F (x) = y .
We now show that φy is a contraction in some closed neighbourhood
of a ∈ I. Then by the contraction mapping theorem, φy has a unique
fixed point, and hence there exists a unique x such that F (x) = y for
y close enough to F (a).
Let A = F ′(a) and α := |A|/2. By continuity of F ′ at a there is an
ε > 0 such that with W := (a− ε,a + ε) ⊂ I we have |F ′(x)− A| < α

for x in the closure W̄ of W .
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The Inverse and Implicit Function Theorems

To see that φy is a contraction on W̄ we observe that if x ∈ W̄ we
have

|φ′y (x)| =

∣∣∣∣1− F ′(x)

A

∣∣∣∣ =

∣∣∣∣A− F ′(x)

A

∣∣∣∣ < α

|A|
= 1/2.

Now, using Proposition 7 we obtain |φy (x)− φy (x ′)| ≤ |x − x ′|/2 for
all x , x ′ ∈ W̄ .
We also need to show that φy (W̄ ) ⊂ W̄ for y suffiently close to
b := F (a). Let δ = |A|ε/2 and V = (b − δ, b + δ). Then for y ∈ V we
have

|φy (a)− a| =

∣∣∣∣a− y − F (a)

A
− a
∣∣∣∣ =

∣∣∣∣y − b
A

∣∣∣∣ < ∣∣∣∣ δA
∣∣∣∣ =

ε

2
.

So if x ∈ W̄ then

|φy (x)− a| ≤ |φy (x)− φy (a)|+ |φy (a)− a| ≤ |x − a|
2

+
ε

2
≤ ε,

and hence φy (x) ∈ W̄ .
Hence, if y ∈ V then φy : W̄ → W̄ has a unique fixed point G(y) ∈W
which depends continuously on y .
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The Inverse and Implicit Function Theorems

Next we prove that the inverse is differentiable: for y = F (x) ∈ V we
will show that G′(y) = 1/B where B := F ′(G(y)).
Let U := G(V ) = W ∩ F−1(V ), which is open. Take
y + k = F (x + h) ∈ V . Then

|h|
2
≥ |φy (x+h)−φy (x)| =

∣∣∣∣h +
F (x)− F (x + h)

A

∣∣∣∣ =

∣∣∣∣h − k
A

∣∣∣∣ ≥ |h|−|K/A|.
Hence, we have

|h|
2
≤
∣∣∣∣ kA
∣∣∣∣ < |k |α and

1
|k |

<
2
α|h|

.

Since
G(y + k)−G(y)− k/B = h − k/B = −(F (x + h)− F (x)− Bh)/B we
obtain

|G(y + k)−G(y)− k/B|
|k |

<
2
|B|α

|F (y + h)− F (y)− Bh|
|h|

→ 0 as |h| ≤ |k |/α→ 0.

This proves that G′(y) = 1/B.



Practical matters 1. Introduction 2. Linear autonomous ODEs 3. Contractions Existence and uniqueness

The Inverse and Implicit Function Theorems

Example
Let F (x) = sin(x). W have F ′(0) = 1. Hence, F is invertible
near 0. Being assured of the fact that the inverse locally exists,
it makes sense to derive a Taylor expansion of it. Let G = F−1

be define in a small neighbourhood of F (0) = 0, where it
satisfies G(sin(x)) = x . We obtain a Taylor expansion of G by
substituting the Taylor expansion of sin(x) and that of G in this
equation and resolve the equaliy at each order in x . We write
G(y) = ay + by2 + cy3 + dy4 + O(y5) and
sin(x) = x − 1

6x3 + O(x5). Matching Taylor coefficients we
obtain a = b = 1, c = 1

6 and d = 0 so that

F−1(x) = x +
1
6

x3 + O(x5).
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The Inverse and Implicit Function Theorems

Without too much difficulty (replacing some numbers by linear
maps and some absolute values by matrix norms) a similar
result can be proven for maps of Rm. (We leave this as an
exercise.)

Theorem (Inverse function theorem in Rm)

Suppose O ⊂ Rm is open, F : O → Rm differentiable, and DF is
invertible at a point a ∈ O and continuous at a. Then there exist
neighbourhoods U ⊂ O of a and V of b := F (a) ∈ Rm such that
F is a bijection from U to V [i.e. F is one-to-one on U and
F (U) = V]. The inverse G : V → U of F is differentiable with
DG(y) = (DF (G(y)))−1. Furthermore, if F is Cr on U, then so
is its inverse (on V).
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The Inverse and Implicit Function Theorems

Example

Consider the map F : R2 → R2 defined by

F
(

x
y

)
=

(
x2 − y
−x

)
.

Then

DF (x) =

(
2x −1
−1 0

)
,

from which it follows hat DF (x) is invertible for all x since
det(DF (x)) = −1, and noninvertibility would require that his
determinant is equal to zero. The fact that the derivative is
invertible for all x ∈ R2 appears to imply that F is invertible on
all of R2. And indeed, the inverse of F can be computed to be

F
(

x
y

)
=

(
−y

y2 − x

)
.
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The Inverse and Implicit Function Theorems

The Implicit Function Theorem (IFT) establishes, under the
assumption of some conditions on derivatives, that if we can
solve an equation for a particular parameter value, then there is
a solution for nearby parameters as well. We illustrate the
principle with a linear map A : Rm × Rp → Rm. We write
A := (A1,A2), where A1 : Rm → Rm and A2 : Rp → Rm are
linear. Suppose we pick y ∈ Rp and want to find x ∈ Rm so that
A(x , y) = 0. To see when this can be done, write
A1x + A2y = 0 as

A(x , y) = 0 ⇔ x = −(A1)−1A2y := Ly . (13)

We can interpret this as saying that A(x , y) = 0 implicitly
defines a map L : Rp → Rm such that A(Ly , y) = 0. The crucial
condition transpiring from this manipulation is that A1 needs to
be invertible.
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The Inverse and Implicit Function Theorems

The IFT asserts that this property naturally extends to nonlinear
maps F : Rm × Rp → Rm, in the neighbourhood of a point (a,b)
where F (a,b) = 0, the corresponding condition being that
D1F (a,b) (denoting the derivative with respect to the first
variable) is invertible. The IFT is closely related to the Inverse
Function Theorem, and can be derived directly from it.

Theorem (Implicit Function Theorem in Rm)
Let O ⊂ Rm × Rp be open and F : O → Rm a Cr map. If there
is a point (a,b) ∈ O such that F (a,b) = 0 and D1F (a,b) is
invertible, then there are open neighbourhoods U ⊂ O of (a,b)
and V ⊂ Rp of b such that for every y ∈ V there exists a unique
x =: G(y) ∈ Rm with (x , y) ∈ U and F (x , y) = 0. Furthermore,
G is Cr and DG(y) = −(D1F (x , y))−1D2F (x , y).
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The Inverse and Implicit Function Theorems

Proof.
The map H(x , y) := (F (x , y), y) : O → Rm × Rp is Cr then
DH(a,b)(x , y) = (D1F (a,b)x + D2F (a,b)y , y). This is equal to
(0,0) only if y = 0 and D1F (a,b)x = 0, which implies that
x = 0 if D1F (a,b) is invertible. Hence DH is invertible and by
the Inverse Function Theorem there are open neighbourhoods
U ⊂ O of (a,b) and W ⊂ Rm × Rp of (0,b) such that
H : U →W is invertible with Cr inverse H−1 : W → U. Thus,
for any y ∈ V := {y ∈ Rp | (0, y) ∈W} there exists an
x := G(y) ∈ Rm such that (x , y) ∈ U and H(x , y) = (0, y), or
equivalently F (x , y) = 0.
Now (G(y), y) = (x , y) = H−1(0, y) and hence G is Cr . To find
DG(b), let γ(y) := (G(y), y). Then F (γ(y)) = 0 and hence
DF (γ(y))Dγ(y) = 0 by the chain rule. For y = b this gives
D1F (a,b)DG(b) + D2F (a,b) = DF (a,b)Dγ(b) = 0, completing
the proof.
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The Inverse and Implicit Function Theorems

Example
Let F : R→ R where F (x , λ) = sin(x) + λ we know that
F (0,0) = 0 and would like to know about the existence of roots
near x = 0 is λ is small. Since D1F (0,0) = 1 6= 0 the IFT
asserts that if λ is small, there exists a unique x(λ) near 0 such
that F (x(λ)) = 0.
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The Inverse and Implicit Function Theorems

Persistence of transverse intersections
Consider two curves in the plane R2. Let they have the parametrized
form f ,g : R→ R2. Then the intersection points of these curves are
roots of the equation h : R2 → R2 with h(s, t) = f (s)− g(t). Suppose
they have an intersection at f () = g(t) with (s, t) = (0,0). Writing
f (s) = (f1(s), f2(s))T and g(s) = (g1(s),g2(s))T we obtain

Dh =

( df1
ds (0) − dg1

dt (0)
df2
ds (0) − dg2

dt (0)

)
.

The first column vector is the tangent vector to the curve of f and the
second vector is the tangent vector to the curve of g. Namely, thinking
of the tangent as the best linear approximation to the curve, we find

f (s) = f (0) + s
df
ds

(0) + O(s2).

so that indeed df
ds = ( df2

ds (0), df2
ds (0)) is the tangent vector at s = 0.

Suppose now that the curves depend smoothly on some parameter
λ ∈ R, yielding parametrizations fλ and gλ, then the intersections are
given by roots of hλ = fλ − gλ.
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The Inverse and Implicit Function Theorems

Assume that at λ = 0 there is an intersection of the curves at
(s, t) = (0,0). We would like to understand what happens if λ is
perturbed away from 0. It follows from the IFT that if h0(0,0) = 0 and
Dh0(0,0) is nonsingular, for sufficiently small λ, there exists unique
smooth functions s(λ) and t(λ) so that hλ(s(λ), t(λ)) = 0 near (0,0).
We refer to this locally smooth variation of the intersection point as
persistence.
The condition that Dh0(0,0) is nonsingular is related to transversality.
We call the linear subspace generated by the tangent vector to the
curve for f transversal to the linear subspace generated by the
tangent vector to the curve for g if these tangent vectors span R2.
The latter depends on the fact whether these vectors are linearly
independent, which is identical to the nonsingularity condition that
det(Dh) 6= 0. We call the intersection of the two curves transverse if
the corresponding tangent vectors span the R2.
We thus find that transverse intersections of curves in the plane are
persistent. This is an illustration of a more general theorem stating
that transverse intersections are persistent. It actually turns out that
typically intersections of curves are transverse.
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The Inverse and Implicit Function Theorems

We note that the Inverse and Implicit Function Theorems can
be proven not only in Rm but also in more general Banach
spaces (which are complete normed vector spaces). There are
any important examples of (infinite dimensional) function
spaces that are Banach spaces.


