
Chapter 4

Existence and uniqueness of solutions
for nonlinear ODEs

In this chapter we consider the existence and uniqueness of solutions for the initial value problem
for general nonlinear ODEs. Recall that it is this property that underlies the existence of a flow.
We only consider the problem for autonomous ODEs, but note that through (1.1.3) the non-
autonomous case follows as a corollary from the autonomous one. We consider the autonomous
ODE

dx

dt
= f(x), x ∈ Rm. (4.0.1)

We are interested in solving the initial value problem to find x(t) satisfying (4.0.1) x(t0) = x0.
We note that since (4.0.1) is autonomous a solution to this problem implies the existence of a
solution for the initial value problem x(τ) = x0 where τ 6= t0.

In the case that the vector field f is linear, we have seen in Chapter 2 that the initial value
problem has a unique solution. The aim of this chapter is to prove the existence of unique
solutions also in the case that f is nonlinear. We will set up the problem in such a way that we
obtain the solution by an application of the Contraction Mapping Theorem that was discussed
in Chapter 3.

4.1 Picard iteration

The first step we undertake is to reformulate (4.0.1) as an integral equation. By formally
integrating (4.0.1) we obtain

x(t) = x0 +

∫ t

t0

f(x(s))ds, (4.1.1)

where the integration constant is chosen such that x(t0) = x0. This does not yield an explicit
solution, since both the left- and right-hand-side contains a reference to the solution x(t) . It
follows that with initial value x(t0) = x0, x(t) is a solution of (4.0.1) if and only if x(t) is
a solution of (4.1.1): by differentiating (4.1.1) it is immediate that (4.1.1) implies (4.0.1), the
implication in the opposite direction follows by the fact that we used the choice of constant (the
only freedom available in integrating (4.0.1)) to satisfy the initial value condition x(t0) = x0.
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We consider (4.1.1) as the basis of the definition of an operator T on functions u from a
closed time interval [t0 − a, t0 + a] to Rm that satisfy u(0) = x0:

T (u(t)) = x0 +

∫ t

t0

f(u(s))ds. (4.1.2)

We observe that solutions of the initial value problem (4.0.1) with x(t0) = x0 correspond to
fixed points of the operator T : if T (x(t)) = x(t) then (4.1.1) is satisfied, which in turn implies
that x(t) is a solution of (4.0.1) with initial value x(t0) = x0.

The strategy is to show that when we consider T as defined on a suitable complete metric
space, T is a contraction. Then we find a unique fixed point for T , that corresponds to the
unique solution of the initial value problem of the ODE.

Before exploring this idea in more detail, let us verify first that this approach may make
sense by trying to solve some simple initial value problems for ODEs using iteration of T . This
process is known as Picard iteration.

Example 4.1.1. Consider

dx

dt
= rx with x ∈ R and initial value x(0) = x0.

We denote the iteration as

uj+1(t) = T (uj(t)) = x0 + r

∫ t

t0

uj(s)ds. (4.1.3)

We are interested in limn→∞ un(t). As initial condition for the iteration process we choose
the constant function u0(t) = x0 (which is the simples example of a function u0 that satisfies
u0(0) = x0). Then

u1(t) = T (u0(t)) = x0 + r

∫ t

0

x0ds = x0(1 + rt),

u2(t) = T (u1(t)) = x0 + r

∫ t

0

x0(1 + rs)ds = x0(1 + rt+
1

2
(rt)2),

u3(t) = T (u2(t)) = x0(1 + rt+
1

2
(rt)2 +

1

3!
(rt)3),

un(t) = x0

n∑
j=0

(rt)j

j!
,

so that limn→∞ un(t) = x0e
rt which is indeed the unique solution to the initial value problem

for this ODE (as we know from Chapter 2).
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Let us try the iteration also with another initial function u0, for instance u0 = x0 + t. Then

u1(t) = T (u0(t)) = x0 + r

∫ t

0

(x0 + s)ds = x0(1 + rt) +
1

2
t2,

u2(t) = T (u1(t)) = x0 + r

∫ t

0

(x0(1 + rs) +
1

2
s2)ds = x0(1 + rt+

1

2
(rt)2) +

1

3!
t3,

u3(t) = T (u2(t)) = x0(1 + rt+
1

2
(rt)2 +

1

3!
(rt)3) +

1

4!
t4,

un(t) = x0

(
n∑
j=0

(rt)j

j!

)
+

1

(n+ 1)!
tn+1,

so that we find that un(t) is equal to the nth order Taylor expansion of the solution plus an
additional term 1

(n+1)!
tn+1. Fortunately, when considering any fixed value of t, this term tends

to zero as n tends to infinity, so that indeed we obtain as desired limn→∞ un(t) = x0e
rt.

Example 4.1.2. Consider the linear ODE(
dx
dt
dy
dt

)
=

(
0 1
−1 0

)(
x
y

)
, with initial condition

(
x(0)
y(0)

)
=

(
1
0

)
.

We perform Picard iteration with u0(t) =

(
1
0

)
:

u1(t) = T (u0(t)) =

(
1
0

)
+

∫ t

0

(
0 1
−1 0

)(
1
0

)
ds =

(
1
−t

)
,

u2(t) = T (u1(t)) =

(
1
0

)
+

∫ t

0

(
−s
−1

)
ds =

(
1− t2

2

−t

)
,

u3(t) = T (u2(t)) =

(
1
0

)
+

∫ t

0

(
−s

−1 + s2

2

)
ds =

(
1− t2

2

−t+ t3

3!

)
,

un(t) =

(
nth order taylor expansion of cos(t) at t = 0
nth order taylor expansion of − sin(t) at t = 0

)
.

And indeed the solution is (
x(t)
y(t)

)
=

(
cos(t)
− sin(t)

)
.

We recall that the idea is to find a complete metric space (which is a function space) on
which T is a contraction, and thus yielding a unique fixed point that corresponds to the unique
solution of the initial value problem for the ODE.

In order to appreciate the choice of function space that we will use in a few moments, let us
first explore some examples of initial value problems for ODEs where existence and uniqueness
of solutions does not hold.
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Example 4.1.3. Let
dx

dt
=

{
1 if x < 0
−1 if x ≥ 0

with x ∈ R. Consider the initial value problem of this ODE with discontinuous vector field, and
initial value x(0) = 0. Since dx

dt
= −1, we observe that x is decreasing but the solution cannot

be decreasing since as soon as x < 0 we have dx
dt
> 0 so that it must be increasing. Hence

there does not exists a solution with initial value x(0) = 0 for this ODE. We note that the
property of the vector field that appears to create this problem is the fact that the vector field
is discontinous at x = 0. So we will not try to prove existence and uniqueness for discontinuous
vector fields.

Example 4.1.4. Consider
dx

dt
= 3x2/3, with x ∈ R

and initial value x(0) = 0. One (immediately obvious) solution is x(t) = 0 for all t. But one

readily verifies that there also exists another solution: x(t) = t3, since dx(t)
dt

= 3t2 = 2(t3)2/3. So
we here have existence, but not uniqueness of solutions. We observe that although the vector
field if continuous, it is not differentiable (as the derivative blows up at x = 0) and even not
Lipschitz. We will later on insist on the fact that the vector field is Lipschitz (which is a slightly
weaker property than continuous differentiability).

Example 4.1.5. Our final example here will illustrate that even if we have existence and
uniqueness of solutions for a given initial value problem of an ODE, such solutions may well
not exist for all time. For instance, consider the ODE

dx

dt
= 1 + x2, with x ∈ R.

Then we can integrate this ODE by means of separation of variables:∫
dx

1 + x2
=

∫
dt ⇔ tan−1(x) = t+ c ⇔ x(t) = tan(c+ t).

Hence, despite the fact that for any initial value problem we can find a unique solution, we
cannot avoid this solution to blow up to ±∞ in finite time (when t+ c = π/2 mod π).

4.2 The Picard-Lindelöf Theorem

We will now prove a theorem about existence and uniqueness of solutions of intial value problems
for ODEs that is known as the ”Picard-Lindelöf Theorem”. We do not present the most general
(or strongest) version of this theorem, but a version that admits a straightforward proof using
the Contraction Mapping Theorem.

Motivated by the examples of the last Section, we consider solutions that are continuous
functions from a finite time-interval Jto a bounded subset U ⊂ Rm (as we want to avoid
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solutions to blow up). With initial value x(t0) = x0, we will set J = [t0 − a, t0 + a] and
U = B(x0, b) (the closed ball in Rm around x0 with radius b). We let C0(J, U) denote the set
of continuous functions from J to U . It turns out that

Proposition 4.2.1. C0(J, U) is a complete metric space with respect to the metric induced by
the supremum norm

d(u, v) = ||u− v||0 := sup
t∈J
|u(t)− v(t)|, (4.2.1)

where | · | denotes the Euclidean norm in Rm: |x| =
√∑m

i=1 x
2
i where x = (x1, . . . , xm).

Proof. It is readily verified that for any Cauchy sequence uj ∈ C0(J, U) it follows that uj(t) ∈
Rm is a Cauchy sequence in Rm for all t ∈ J . Hence, since Rm is complete it follows that
C0(J, U) is complete as well.

The main theorem about existence and uniqueness of solutions follows from the fact that
under some mild condition on the time-interval J , the map T defined in (4.1.2) which is at the
basis of the Picard iteration is a contraction on this metric space.

Theorem 4.2.2 (Picard-Lindelöf). Consider the ODE

dx

dt
= f(x), x ∈ Rm,

with initial value problem x(t0) = x0. Let U = B(x0, b) and J = [t0 − a, t0 + a], where
f : U → Rm is Lipschitz with Lipschitz constant K, and |f(x)| ≤ M for all x ∈ U , then the
initial value problem has a unique solution x ∈ C0(J, U) as long as the time-interval is chosen
with a satisfying 0 < a < min(1/K, b/M).

Proof. The aim is to show that with 0 < a < min(1/K, b/M) the map T defined in (4.1.2) is
a contraction on the metric space C0(J, U) with metric (4.2.1). Existence and uniqueness then
follows directly by application of the Contraction Mapping Theorem.

First we note that f is continuous because f is Lipschitz. Then f takes a maximum and
minimum on U since U is compact (closed and bounded), and hence a finite bound M exists.

In order to make sure that T maps C0(J, U) into itself we must make sure that a is small
enough to guarantee that T (u(t)) ∈ U for all t ∈ J . We use the bound M to obtain with
t ∈ J = [t0 − a, t0 + a] that

|T (u(t))− x0| =
∣∣∣∣∫ t

t0

f(u(s))ds

∣∣∣∣ ≤ ∣∣∣∣∫ t

t0

|f(u(s))|ds
∣∣∣∣ ≤Ma

from which it follows that if a < b/M we have T (u(t)) ∈ B(x0, b) for all t ∈ J .
It remains to be shown that T is a contraction on C0(J, U). Consider two elements u, v ∈

C0(J, U). Then

|T (u(t))− T (v(t))| =

∣∣∣∣∫ t

t0

f(u(s))− f(v(s))ds

∣∣∣∣ ≤ ∣∣∣∣∫ t

t0

|f(u(s))− f(v(s))|ds
∣∣∣∣

≤ K

∣∣∣∣∫ t

t0

|u(s)− v(s)|ds
∣∣∣∣ ≤ aKd(u, v).
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Hence, if aK < 1 the map T is a contraction on C0(J, U).

Theorem 4.2.2 establishes the existence of a flow Φt, albeit possibly only on a small time
interval. One can actually substantially improve on this result. For instance, one can show
that the flow exist for all time if f is Lipschitz on its entire domain (such as is the case when
the domain is compact and f is continuously differentiable), but we will not go into the details
of such results here.

It is not yet enough to know that a flow map exists, but we would also like to establish some
useful properties of the flow such as continuity and differentiability with respect to time and
initial conditions. In the special case of flows of linear autonomous ODEs we have already seen
in Chapter 2 from the explicit solution that it is continuous and differentiable (actually C∞)
with respect to time and initial conditions. In general, it turns out that also in the nonlinear
case the flow is well behaved: if f : Rm → Rm is Ck (k times continuously differentiable) then
so is Φt. We will only prove a weaker statement, that provides some insight.

Theorem 4.2.3. Let O ∈ Rm be open and suppose f : O → Rm is Lipschitz, with Lipschitz
constant K. Let y(t) and z(t) be solutions of the ODE

dx

dt
= f(x)

which remain in O and are defined for t ∈ [t0, t1]. Then for all t ∈ [t0, t1] we have

|y(t)− z(t)| ≤ |y(t0)− z(t0)| exp(K(t− t0)).

It follows from Theorem 4.2.3 that Φt is continuous (with respect to its domain and time-
variable t). Namely, it follows that y(t)→ z(t) for all t ∈ [t0, t1] if y(t0)→ z(t0). The proof of
this theorem involves a famous inequality.

Proposition 4.2.4 (Gronwall’s inequality). Let u : [0, α]→ R be continuous and non-negative.
Suppose C ≥ 0 and K ≥ 0 are such that

u(t) ≤ C +

∫ t

0

Ku(s)ds, ∀ t ∈ [0, α],

then
u(t) ≤ CeKt, ∀ t ∈ [0, α].

Proof. Suppose first that C > 0 and define

U(t) = C +

∫ t

0

Ku(s)ds.

Then we have U(t) ≥ u(t) and also

dU

dt
(t) = Ku(t) ⇒

dU
dt

(t)

U(t)
≤ K,
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so that, using U(0) = C, we obtain

d

dt
lnU(t) ≤ K ⇒ lnU(t) ≤ lnU(0) +Kt ⇒ u(t) ≤ U(t) ≤ CeKt.

The result with C = 0 follows by taking the limit C ↓ 0.

Proof of Theorem 4.2.3. Define v(t) = |y(t) − z(t)|. We use the integral formulation of the
initial value problem (4.1.1) to obtain

y(t)− z(t) = y(t0)− z(t0) +

∫ t

t0

(f(y(s))− f(z(s)))ds

which implies that

v(t) ≤ v(t0) +

∫ t

t0

|f(y(s))− f(z(s))|ds ≤ v(t0) +

∫ t

t0

Kv(s)ds.

Finally we apply Gronwall’s inequality to u(t) := v(t+ t0) to obtain

u(t) = v(t+ t0) ≤ v(t0) +

∫ t+t0

t0

|f(y(s))− f(z(s))|ds ≤ v(t0) +

∫ t

0

Ku(s)ds

which implies
v(t+ t0) = u(t) ≤ v(t0)e

Kt ⇒ v(t) ≤ v(t0)e
K(t−t0)

for all t ∈ [t0, t1].

Along the same lines one can prove differentiability of the flow to the same degree as existing
differentiability of the vector field f . We do not further elaborate on proofs of such facts, which
can be found elsewhere.

4.3 Epilogue

After having established the existence and uniqueness for initial value problems in Chapter 2
for linear ODEs by finding a unique explicit solution, in this chapter we have shown that the
existence and uniqueness for initial value problems does not always hold, but that it still holds
for nonlinear ODEs with some mild regularity properties of the vector field, such as being
locally Lipschitz. We have obtained this result without finding explicit solutions (which turns
out to be a rather useless aim in this context).

We note that although existence and uniqueness of initial value problems is a quite natural
and desirable property from a modeling perspective, it does not usually hold for other types of
differential equations (such as partial differential equations).

The existence and uniqueness of initial value problems enables us to study the dynamics of
an ODE in terms of the flow on the phase space generated by its solutions. In the remaining
chapters we will focus on the analysis of flows of ODEs from a geometric point of view.


