
Chapter 2

Linear autonomous ODEs

2.1 Linearity

Linear ODEs form an important class of ODEs. They are characterized by the fact that the
vector field f : R

m × R
p × R → R

m is linear (at constant value of the parameters and time),
that is for all x,y ∈ Rm and a, b ∈ R

f(ax + by, λ, t) = af(x, λ, t) + bf(y, λ, t).

This implies that the vector field may be represented by an m × m matrix A(λ, t), so that

dx

dt
= A(λ, t)x.

In this chapter we will focus on the case that the matrix A does not depend on time (so that
the ODE is autonomous):

dx

dt
= A(λ)x,

It turns out that

Proposition 2.1.1. The flow of an ODE is linear if and only if the corresponding vector field
is linear.

Proof. The flow Φt1,t0
λ is linear if Φt1,t0

λ (ax + by) = aΦt1,t0
λ (x) + bΦt1,t0

λ (y) for all a, b ∈ R and
x,y ∈ Rm. Equation (1.2.1) contains the formal definition of the flow map, from which it
immediately follows that linearity of Φ in x is correlated with linearity of f in x.

2.2 Explicit solution: exponential

We consider the linear autonomous ODE

dx

dt
= Ax, (2.2.1)

11



12 CHAPTER 2. LINEAR AUTONOMOUS ODES

where x ∈ Rm and A ∈ gl(m, R) (an m × m matrix with real entries).
In the case that m = 1, when A ∈ R, the flow map Φt of the linear ODE is equal to

(multiplication by) exp(At).
It turns out that we can write the flow map of a general linear autonomous ODE in this

same form, if we define the exponential operator as

Definition 2.2.1. Let L ∈ gl(m, R), then

exp(L) :=

∞
∑

k=0

Lk

k!

You should recognize the familiar Taylor expansion of the exponential function in the case
that m = 1. In the formula, Lk represents the matrix product of k consecutive matrices L.

It follows that exp(L) is also a linear map (which can be represented by an m×m matrix).
Moreover, it is invertible, with inverse exp(−L). Technically, one may worry about the fact
whether the coefficients of the matrix exp(L) are indeed all smaller than infinity. But it is in
fact not too hard to find an upper bound for any of the entries of exp(L) given that the entries
of the matrix L are finite. (See exercise)

Theorem 2.2.2. The linear autonomous ODE (2.2.1) with initial condition x(0) = y has the
unique solution x(t) = exp(At)y.

Proof. We use the definition of the derivative:

d

dt
exp(At) = lim

h→0

exp((t + h)A) − exp(tA)

h

= lim
h→0

exp(hA) − I

h
exp(tA)

= lim
h→0

(

1

h

∞
∑

n=1

(hA)n

n!

)

exp(tA)

= lim
h→0

(

hA

h
+

1

h

∞
∑

n=2

(hA)n

n!

)

exp(tA)

= lim
h→0

(

A + h
∞
∑

j=0

hj Aj+2

(j + 2)!

)

exp(tA) = A exp(tA).

Since y is constant it thus follows that d
dt
x(t) = A exp(At)y = Ax(t).

To show that the solution is unique, suppose that x(t) is a solution. We calculate (by using
the chain rule)

d

dt
(exp(−tA)x(t)) =

(

d

dt
exp(−tA)

)

x(t)) + exp(−tA)
dx(t)

dt

= −A exp(−At)x(t) + exp(−tA)Ax(t) = 0.
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Hence, x(t) = exp(tA)c where c ∈ Rm is some constant. We observe that this constant is
entirely determined to be equal to y by the boundary condition x(0) = y. Hence the solution
x(t) = exp(tA)y is unique.

It is easy to extend the result to the case of initial condition x(τ) = y, yielding x(t) =
exp(A(t − τ))y.

Corollary 2.2.3 (Existence and uniqueness). For the linear autonomous ODE (2.2.1), through
each point y in the phase space passes exactly one solution at time t = τ , namely x(t) =
exp(A(t − τ))y.

2.3 Computation of the flow map

2.3.1 The planar case

We consider the calculation of the flow map exp(At). Before dealing with matters in higher
dimension we first focus on the case of ODEs on the plane R2. We consider the calculation
of the flow map exp(At). Recall the definition of the exponential of a linear map (matrix) in
Definition 2.2.1.

Example 2.3.1 (Hyperbolic). Let

A =

(

λ1 0
0 λ2

)

,

with λ1, λ2 ∈ R, then

exp(At) =

∞
∑

k=0

(At)k

k!
=

∞
∑

k=0

(

λ1t 0
0 λ2t

)k

k!
=

(

∑∞
k=0

λk
1
tk

k!
0

0
∑∞

k=0
λk
2tk

k!

)

=

(

eλ1t 0
0 eλ2t

)

Example 2.3.2 (Elliptic). Let

A =

(

0 −β
β 0

)

,

with β ∈ R, then

A2 =

(

−β2 0
0 −β2

)

= −β2I,

so that for all k ∈ N

A2k = (−)kβ2kI, A2k+1 =

(

0 (−)k+1β2k+1

(−)kβ2k+1 0

)

.

so that

exp(At) =

(

∑∞
k=0(−1)k (βt)2k

(2k)!
−∑∞

k=0(−1)k (βt)2k+1

(2k+1)!
∑∞

k=0(−1)k (βt)2k+1

(2k+1)!

∑∞
k=0(−1)k (βt)2k

(2k)!

)

=

(

cos(βt) − sin(βt)
sin(βt) cos(βt)

)

.
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Example 2.3.3 (Jordan Block). Let

A =

(

λ 1
0 λ

)

,

with λ ∈ R, then

Ak =

(

λk kλk−1

0 λk

)

.

so that

exp(At) =

(

∑∞
k=0

(λt)k

k!
t
∑∞

k=0
(λt)k

k!

0
∑∞

k=0
(λt)k

k!

)

=

(

eλt teλt

0 eλt

)

.

Distinct real eigenvalues

We consider a linear autonomous ODE dx
dt

= Ax, with A ∈ gl(2, R) andx ∈ R2. Suppose that
A has a real eigenvalue µ with orresponding eigenvector v with. Then if we consider an initial
condition on the linear subspace V that is generated by v (a line) then we find that V is an
invariant subspace for the flow, that is Φt(V ) = V . In fact, we may express that ODE restricted
to V as dv

dt
= µv, and the flow map of this restricted ODE is (multiplication by) exp(µt).

Suppose now that A has two distinct eigenvalues µ1 6= µ2. Then it follows that the cor-
responding eigenvectors v1 and v2 must be linearly independent, i.e. v1 6= av2 for all a ∈ R.
In other words, v1 and v2 span the plane R

2. As a consequence, we may write any point as a
linear combination of the two eigenvectors

x = av1 + bv2, (2.3.1)

and by linearity of the flow map, and knowing the flow in the directions of the eigenvectors, we
obtain

Φt(x) = Φt(av1 + bv2) = aΦt(v1) + bΦt(v2) = aeλ1tv1 + beλ2tv2. (2.3.2)

In order to find the matrix expression for Φt we now need to find expressions for the
coefficients a and b in (2.3.1). We do this by taking the (standard matrix) product on both
sides with vectors (v⊥

i )⊤, where v⊥
i is perpendicular to the eigenvector vi, for i = 1, 2:

a =
(v⊥

2 )⊤x

(v⊥
2 )⊤v1

, b =
(v⊥

1 )⊤x

(v⊥
1 )⊤v2

.

On a more abstract level, we may think of the vectors av1 and bv2 being obtained from the
vector x by projection:

P1x = av1 = v1((v
⊥
2 )⊤v1)

−1(v⊥
2 )⊤x,

P2x = bv2 = v2((v
⊥
1 v2)

⊤)−1(v⊥
1 )⊤x.

Note that projections P are linear maps that satisfy the property that P 2 = P . As they are
linear, we can represent them by matrices:

P1 = v1((v
⊥
2 )⊤v1)

−1(v⊥
2 )⊤, P2 = v2((v

⊥
1 )⊤v2)

−1(v⊥
1 )⊤.
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So in terms of these expressions, we can rewrite (2.3.2) as

Φt = eλ1tP1 + eλ2tP2. (2.3.3)

Example 2.3.4. Let A =

(

1 1
0 2

)

, then the eigenvalues are equal to λ1 = 1 and λ2 = 2 with

corresponding eigenvectors v1 =

(

1
0

)

and v2 =

(

1
1

)

. Any vector in R2 can be decomposed

into a linear combination of these eigenvectors as follows:

(

x
y

)

= (x − y)

(

1
0

)

+ y

(

1
1

)

.

Hence,

exp(At)

(

x
y

)

= (x − y)et

(

1
0

)

+ ye2t

(

1
1

)

=

(

(x − y)et + ye2t

ye2t

)

=

(

et e2t − et

0 e2t

)(

x
y

)

,

so that

exp(At) = et

(

1 −1
0 0

)

+ e2t

(

0 1
0 1

)

.

We now construct the projections using the formulas we obtained above. Choosing the perpen-

dicular vectors (for instance) as v⊥
1 =

(

0
1

)

and v⊥
2 =

(

1
−1

)

, we obtain

P1 = v1((v
⊥
2 )⊤v1)

−1(v⊥
2 )⊤ =

(

1 −1
0 0

)

, P2 = v2((v
⊥
1 )⊤v2)

−1(v⊥
1 )⊤ =

(

0 1
0 1

)

.

The answer in Example 2.3.1 can be evaluated in the same way.
We note that the above procedure can also be carried out in the higher dimensional case.

In the m-dimensional case, if A has m distinct real eigenvalues λ1, . . . , λm then

exp(At) =
m
∑

k=1

eλktPk,

where Pk is the projection to the one-dimensional subspace spanned by the eigenvector for
eigenvalue λk with kernel equal to the (m− 1)-dimensional subspace spanned by the collection
of all other eigenvectors. Projections P are characterized by the following properties:

• P is linear

• range(P ) (where to project to)

• ker(P ) (what should be projected away)

• P 2 = P
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Proposition 2.3.5 (Projection formula). A formula for the m × m matrix representing the
projection with a given range and kernel can be found as follows. Let the vectors u1, . . . ,uk

form a basis for the range of the projection, and assemble these vectors in the m × k matrix
A. The range and the kernel are complementary spaces, so the kernel has dimension m− k. It
follows that the orthogonal complement of the kernel has dimension k. Let w1, . . . ,wk form a
basis for the orthogonal complement of the kernel of the projection, and assemble these vectors
in the matrix B. Then the projection to the range is defined by

P = A(B⊤A)−1B⊤.

Proof. Exercise.

It is readily verified that indeed the formulas we obtained for the projections in the two-
dimensional case are special cases of this general result.

Complex conjugate pair of eigenvalues

The eigenvalues of a matrix with real entries need not be real, but in case we have an eigenvalue
λ = α + iβ (with α, β ∈ R). Namely, eigenvalues λ of a matrix A ∈ gl(m, R) are roots of the
characteristic polynomial, that is, they satisfy

det(A − λI) = 0. (2.3.4)

As A has only real entries, it follows (by taking the complex conjugate of the entire equation)
that if λ satisfies (2.3.4) then so does its complex conjugate λ.

The eigenvectors of a real matrix for complex eigenvalues are never in Rm. This can be seen
from taking the complex conjugate of the eigenvalue equation Av = λv, from which it follows
that if v is an eigenvector for eigenvalue λ then v is an eigenvector for eigenvalue λ.

Hence for each pair of complex conjugate eigenvalues λ, λ̄ we have a complex conjugate pair
of eigenvectors v,v ∈ Cm. Here we use the natural identification of Rm as a subspace of Cm.
Although practical, it is maybe not so elegant to go outside our ”real” phase space Rm.

In analogy to the case of real eigenvalues, we are interested in identifying an invariant
subspace of Rm which is associated with the complex eigenvalues. The complex eigenvectors
v,v span a complex vector space whose real subspace is given by

E = spanC(v,v) ∩ R
2 = spanR(v + v, i(v − v)).

It is easily verified that indeed E is an A-invariant subspace: let λ = α + iβ and v = x + iy,
then

A(a(v + v) + bi(v − v)) = a(Av + Av) + ib(Av − Av) = a(λv + λv) + ib(λv − λv)

= 2a(αx − βy) − 2b(αy + βx) = (2aα − 2bβ)x − (2aβ + 2bα)y

= (aα − bβ)(v + v) + (aβ + bα)i(v − v).
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In particular, if we choose the vectors v+v

|v+v| and i(v−v)
|i(v−v)| as the (orthonormal) basis of E. Let us

now assume that m = 2 and A has two complex conjugate eigenvalues. Then according to the
above formula, with the above mentioned basis, it has he form

A =

(

α −β
β α

)

. (2.3.5)

We note that the eigenvalues of this matrix are indeed α± iβ, as required. In a similar way to
Example 2.3.2, the exponential can be computed

exp(At) = eαt

(

cos(βt) − sin(βt)
sin(βt) cos(βt)

)

.

We could in fact make use of the complex eigenvectors to derive the following analogy to
the expression for the flow map in the real distinct eigenvalue case:

exp(At) = e(α+iβ)tPv + e(α−iβ)tPv,

where (with ”perpendicular” defined with respect to standard inner product on C
2: v · w =

∑

i viwi with v =
∑

i viei , v =
∑

i wiei and {ei} is an orthonormal basis)

Pv = v((v⊥)
⊤
v)−1(v⊥)

⊤
, Pv = Pv

Example 2.3.6. In the case of (2.3.5) the eigenvector of A for eigenvalue λ = α + iβ is

v =

(

1
−i

)

, v =

(

1
i

)

, and we choose v⊥ =

(

i
1

)

. Then we obtain

Pv = v((v⊥)
⊤
v)−1(v⊥)

⊤
=

(

1
2

− 1
2i

1
2i

1
2

)

.

so that

exp((α + iβ)t)Pv + exp((α − iβ)t)Pv = eαt

[(

1
2
eiβt − 1

2i
eiβt

1
2i

eiβt 1
2
eiβt

)

+

(

1
2
e−iβt 1

2i
e−iβt

− 1
2i

e−iβt 1
2
e−iβt

)]

= eαt

(

cos(βt) − sin(βt)
sin(βt) cos(βt)

)

.

Example 2.3.7. Let A =

(

1 −3
2 1

)

, then one eigenvalue is equal to 1 + i
√

6 with corre-

sponding eigenvector v =

(

1

− i
√

6
3

)

and the other eigenvalue and eigenvector are the complex

conjugate.
We now construct the projections using the formulas we obtained above. Choosing v⊥ =

(

i
√

6
3

1

)

we obtain

Pv = v((v⊥)
⊤
v)−1(v⊥)

⊤
=

(

1
2

i 3
2
√

6

−i 1√
6

1
2

)

.
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so that

exp((1 + i
√

6)t)Pv + exp((1 − i
√

6)t)Pv = et

[

ei
√

6

(

1
2

− 1
2i

√
6

2
1
2i

√
6

3
1
2

)

+ c.c.

]

= eαt

(

cos(t
√

6) −
√

6
2

sin(t
√

6)√
6

3
sin(t

√
6) cos(t

√
6)

)

.

Jordan Block

The matrix in Example 2.3.3 has the property that there is only one eigenvalue and one eigen-
vector, even though it is a 2 × 2 matrix.

It is useful to introduce a few definitions.

Definition 2.3.8 (Algebraic multiplicity). If a polynomial can be written as p(r) = (r−λ)kq(r)
with q(λ) 6= 0 then λ is called a root of p of algebraic multiplicity k.

In the calculation of eigenvalues, the terminology ”algebraic multiplicity of an eigenvalue”
is used with reference to the characteristic polynomial obtained from det(A − λI) = 0.

Definition 2.3.9 (Geometric multiplicity of eigenvalues). An eigenvalue has geometric multi-
plicity k if the eigenspace associated to this eigenvalue has dimension k.

In case the algebraic and geometric multiplicities of an eigenvalue are not equal to each
other, it is useful to introduce the notion of a generalized eigenspace.

Definition 2.3.10 (Generalized eigenspace). The generalized eigenspace Eλ for eigenvalue λ
of a square matrix A, with algebraic multiplicity n, is equal to ker((A − λI)n).

In Example 2.3.3, λ is an eigenvalue of algebraic multiplicity 2 and geometric multiplicity

1. The eigenspace for λ is spanned by the vector

(

1
0

)

, whereas the generalized eigenspace

for λ is equal to the entire R2.
The following observation generalizes the fact that eigenspaces are flow invariant.

Proposition 2.3.11. Generalized eigenspaces of A ∈ gl(m, R) are flow invariant for the ODE
d
dt
x = Ax, x ∈ R

m.

Proof. Let n denote the algebraic multiplicity of an eigenvalue λ of A. Let w ∈ Eλ (the
generalized eigenspace). Then, since (A − λI)nw = 0, Aw satisfies also the property that
Aw ∈ ker(A − λ)n. This shows that solutions with initial conditions in Eλ remain within
Eλ.

Let us consider now the general case of a matrix A ∈ gl(2, R) with a real eigenvalue λ
of algebraic multiplicity two and geometric multiplicity one.1 Let v denote the eigenvector.

1In the case that algebraic and geometric multiplicity are both equal to two, there are two linearly indepen-

dent eigenvectors and the method presented for distinguished eigenvalues can be applied.
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The generalized eigenspace Eλ is spanned by v and another vector, which we call w, where
w 6∈ ker(A − λI). Since w ∈ ker(A − λI)2 it follows that (A − λI)w ∈ ker(A − λI) so that

Aw = λw + cv,

for some c 6= 0 (otherwise w ∈ ker(A− λI)). By scaling of w one can set c = 1 without loss of
generality. We recall that also Av = λv. Hence, with respect to the basis {v,w} A takes the
form

A =

(

λ 1
0 λ

)

.

Namely, let

(

a
b

)

= av + bw, then

A

(

a
b

)

= A(av + bw) = aAv + bAw = (aλ + b)v + λw =

(

λ 1
0 λ

)(

a
b

)

.

Considering the ODE d
dt
x = Ax, writing x(t) = (v(t), w(t))T with respect to the basis

{v,w} (i.e. x(t) = v(t)v + w(t)w) we are left to solve

d

dt
v(t) = λv(t) + w(t),

d

dt
w(t) = λw(t).

The last equation, with initial value w(0) = v0 admits the solution w(t) = eλtw0, which leaves
us to solve

v(t) = λv(t) + eλtw0.

With initial condition v(0) = v0 this ODE has the solution

v(t) = eλtv0 + teλtw0.

and the resulting flow is given by

Φt =

(

eλt teλt

0 eλt

)

, so that indeed Φt

(

v0

w0

)

=

(

eλtv0 + teλtw0

eλtw0

)

. (2.3.6)

2.3.2 Jordan normal form

In the previous section we have seen how we can solve linear autonomous ODEs. From the
above described methodology it already transpired that the problem decomposes to ODEs on
generalized eigenspaces. On each of these eigenspaces one can choose convenient coordinates.
We have already seen some examples:

• If λ ∈ R and the geometric multiplicity of λ is equal to the algebraic multiplicity, the
eigenvectors for λ span Eλ. Choosing these as a basis yields a diagonal matrix A.

• If λ 6∈ R and the geometric multiplicity of λ is equal to the algebraic multiplicity, the
linear combinations of (complex) eigenvectors (v + v), i(v− v) span Eλ. Choosing these
as a basis yields a blockdiagonal matrix A with 2 × 2 blocks of the form (2.3.5).
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In case the geometric multiplicity of eigenvalues is less than the algebraic multiplicity, we have
so-called Jordan blocks (hence the use of this terminology in the above example). You should
be familiar with these (from M2P2) in the case of matrices with complex coefficients. For real
matrices, analogous results can be proven, and Jordan blocks take the form

λ real :

















λ 1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . . λ 1
0 · · · · · · 0 λ

















λ = α ± iβ complex :

















Rλ I 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . . Rλ I
0 · · · · · · 0 Rλ

















, where Rλ =

(

α −β
β α

)

,

and I denotes the 2 × 2 identity matrix.

Choice of coordinates or coordinate transformation

In the above we have presented the Jordan normal form, as arising naturally as a consequence of
a convenient choice of basis for the coordinates. Alternatively, we can also take the viewpoint
that any matrix A can be transformed into Jordan normal form by an appropriate linear
coordinate transformation.

Suppose e1, . . . , em is a basis for Rm in terms of which we have written our ODE. We
consider a new basis ê1, . . . , êm obtained by a linear transformation T ∈ Gl(m, R) (group of
invertible linear maps from Rm to itself): êj = Tej. We consider the consequence for the
matrix representation of the linear vector field. We can write points in Rm in two ways, as
∑m

i=1 xiei =
∑m

i=1 yiêi. Let x = (x1, . . . , xm) and y = (y1, . . . , ym). Then x and y are related
as x = Ty. For the ODE this means

dx

dt
= Ax ⇔ d(Ty)

dt
= ATy ⇔ dy

dt
= Ãy, where Ã = T−1AT.

So the Jordan normal form result implies that there exists a linear coordinate transformation
represented by T ∈ Gl(m, R) that conjugates A to Ã where the latter has the structure of the
(real) Jordan normal form. Often, if there is no specific significance attached to any particular
choice of coordinates, it is assumed that linear vector fields are in Jordan normal form.

2.3.3 Jordan-Chevalley decomposition

There is another property of linear maps that may be of use when analysing the exponential of
a linear map. We need to introduce the notion of a semi-simple and nilpotent linear map (or
matrix).
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Definition 2.3.12 (Semi-simple and nilpotent linear maps). A linear map A ∈ gl(m, R) is
called semi-simple if the geometric and algebraic multiplicities of each eigenvalue are equal to
each other. A linear map A ∈ gl(m, R) is called nilpotent if there exists a p ∈ N such that
Ap = 0 (the null matrix).

We now consider the following decomposition:

Definition 2.3.13 (Jordan-Chevalley decomposition). Let A ∈ gl(m, R). Then A = S + N is
called the Jordan-Chevalley decomposition of A if S is semi-simple, N is nilpotent and N and
S commute, i.e. NS = SN .

Theorem 2.3.14. Every A ∈ gl(m, R) admits a unique Jordan-Chevalley decomposition.

Remark 2.3.15. Please note that the above notions and results also hold for complex matrices
in gl(m, C).

Note that the Jordan-Chevalley decomposition of a matrix in Jordan normal form consists
of the ”diagonal” (semi-simple) and ”off-diagonal” (nilpotent) parts (note that indeed these
parts are semi-simple and nilpotent, respectively, and that they commute).

For our purposes here (computation of exp(At)), the Jordan-Chevalley tells us that, if
A = N + S is the Jordan-Chevalley decomposition, then

exp(At) = exp(St) exp(Nt),

so that one can focus on exponentiating semi-simple and nilpotent matrices separately. In this
respect we note that the exponential exp(Nt) where N is nilpotent, with p least such that
Np = 0, takes the form

exp(Nt) =

∞
∑

k=0

(Nt)k

k!
=

p−1
∑

k=0

(Nt)k

k!

and thus is polynomial in t.

Example 2.3.16. The Jordan-Chevalley decomposition of the matrix A =

(

λ 1
0 λ

)

is

A = S + N , where S =

(

λ 0
0 λ

)

and N =

(

0 1
0 0

)

Consequently, we have

exp(St) =

(

eλt 0
0 eλt

)

and exp(Nt) = I + Nt =

(

1 t
0 1

)

so that, in correspondence with (2.3.6)

exp(At) =

(

eλt 0
0 eλt

)

·
(

1 t
0 1

)

=

(

eλt teλt

0 eλt

)

.
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2.4 Stability

Linear autonomous ODEs always have an equilibrium at 0, since there we have dx
dt

= A0 = 0,
and thus 0 is always a fixed point of the flow Φt = exp(At). One of the elementary things
one may want to understand about dynamics is whether points in the neighbourhood of an
equilibrium have a tendency to stay nearby, or whether they have a tendency to wander off.
We call the former type stable. The formal definition is:

Definition 2.4.1 (Lyapunov and asymptotic stability). An equilibrium or fixed point x̄ is
Lyapunov stable, if for every neighbourhood U of x̄, there exists neighbourhoods V0 and V1 of
x̄ such that V1 ⊂ V0 ⊂ U and the forward time orbits of all initial conditions x0 ∈ V1 remain in
V0 for all time.

A special case of Lyapunov stability is asymptotic stability, which require that all initial
conditions in V1 converge to x̄ as time goes to infinity.

Certain properties of the eigenvalues of a linear ODE are directly related to stabilty.

Proposition 2.4.2. Let A ∈ gl(m, R). Then the trivial fixed point 0 of the flow Φt = exp(At)
is not Lyapunov stable if the real part of one eigenvalue of A is positive. The fixed point is
asymptotically stable if and only if the real parts of all eigenvalues of A are negative.

Proof. We first note that (generalized) eigenspaces are flow invariant. Whenever there is an
eigenvalue with positive real part, apart from the trivial fixed point, all other initial conditions
within this eigenspace tend to infinity as time goes forward, which contradicts stability.

If all eigenvalues have a negative real part, the flow on each (generalized) eigenspace is
contracting (towards 0) which implies asymptotic stability. If there exists an eigenvalue with
zero real part, then the flow on the corresponding generalized eigenspace contradicts asymptotic
stability. Namely, on eigenspaces of eigenvalues with zero real part the flow is trivial (the
identity map) if the eigenvalue is real, and a (generally skewed) rotation in the case of purely
imaginary complex conjugate eigenvalues. If the geometric multiplicity of such eigenvalues
is less than their algebraic multiplicity, due to the fact that the flow has factors which are
polynomial in time, most initial conditions in the generalized eigenspace do not stay in the
neighbourhood of the equilibrium as t → ∞.

Consider a linear autonomous ODE dx
dt

= Ax A ∈ gl(m, R) and x ∈ R
m, then we may

write the phase space Rm as a direct sum of generalized eigenspaces Eλ (where we take the
convention that in case λ 6∈ R, Eλ denotes the invariant subspace associated with eigenvalues
λ and λ):

R
m = ⊕jEλj

.

(recall that a sum of vector spaces is a direct sum if all of the components in the sum only have
trivial intersection).

We define the stable and unstable subspaces of Rm as the union of generalized eigenspaces
for eigenvalues with negative and positive real parts, respectively:

Es = ⊕Re(λj)<0Eλj
, Eu = ⊕Re(λj)>0Eλj

.
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The union of the remaining generalized eigenspaces (for eigenvalues with zero real part) is called
the centre subspace:

Ec = ⊕Re(λj)=0Eλj
.

The flow on the stable subspace is asymptotically stable, and the flow on the unstable subspace
is asymptotically unstable (the inverse flow is asymptotically stable). The flow on the center
manifold is not asymptotically stable (or unstable) as there is always a subspace on which the
flow is either stationary (corresponding to zero eigenvalue) or a rotation (purely imaginary
complex conjugate pair of eigenvalues). The centre subspace Ec is Lyapunov stable in case
there are no nontrivial Jordan blocks.

In general it is not easy to prove that an equilibrium is Lyapunov Stable or asymptotically
stable, but we will see a few instances where it is possible. In the exercises you find some
discussion about the Lyapunov functions, which can be used to prove stability. The difficulty
with that method is that there is no general way of constructing those Lyapunov functions,
so that one in the end here needs to rely on some particular insight or intuition in order to
construct a Lyapunov function.

Finally we give some simple examples of Lyapunov stable equilibria.

Example 2.4.3. Consider dx
dt

= Ax with x ∈ R2 and

A =

(

a −1
1 a

)

.

Then x = 0 is an equilibrium point. The eigenvalues of A are a ± i. If a ≤ 0 the equilibrium
is Lyapunov stable. We readily compute that |Φtx| = eat|x| for all x ∈ R2. In case a = 0 then
the flow is a rotation around the origin and whereas the equilibrium is Lyapunov stable, it is
not asymptotically stable. If a < 0 the equilibrium is asymptotically stable.

2.5 Phase portraits

We finally consider some geometrical properties of the flow that apply to linear as well as
nonlinear autonomous ODEs.

We recall that the right hind side of the ODE

dx

dt
= f(x), x ∈ R

m (2.5.1)

provides for each point in the phase space the vector f(x); accordingly we call f a vector field.
The ODE further specifies that we identify the vector f(x) with dx/dt.

The following property is essential:

Proposition 2.5.1. Let x(t) be a solution of (2.5.1). Then for each t0, the vector f(x(t0)) is
tangent to x(t) at x(t0).
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Figure 2.1: Examples of linear planar vector fields [made with Maple] in the (from left to
right) elliptic, hyperbolic and Jordan block cases. Part of one solution curve is also plotted to
illustrate the fact that such curves are everywhere tangent to the vector field.

Proof. We will present the proof for a planar ODE (m = 2). The arguments are similar when
m > 2.

First we find an expression for the tangent vector. Suppose that the curve x(t) has the
implicit form F (x, y) = 0. To find the tangent in (x0, y0) ∈ x(t) we evaluate the function F in
the point (x0 + δx, y0 + δy) with δx and δy small, and write the Taylor series expansion

F (x0 + δx, y0 + δy) = F (x0, y0) +
∂F

∂x
(x0, y0)δx +

∂F

∂y
(x0, y0)δy + O(|δx, δy|2).

Thus in order to stay on the curve, this expression needs to be equal to zero. We already have
F (x0, y0) = 0 since (x0, y0) is on the curve, so to first order we need to satisfy

(

∂F
∂x

(x0, y0)
∂F
∂y

(x0, y0)

)

·
(

δx
δy

)

= 0

The vector on the left hand side in this inner product is known as the gradient ∇F (x0, y0). The
vector on the right hand side is the best linear approximation to the curve in (x0, y0) which is
known as the tangent. We thus observe that the tangent vector is perpendicular to the gradient
of the function that defines the curve.

We finally relate this to the ODE. Taking the derivative of F with respect to t, and noting
that F (x(t), y(t)) = 0 by definition, we obtain

0 =
d

dt
F (x0, y0) =

∂F

∂x
(x0, y0)ẋ +

∂F

∂y
(x0, y0)ẏ = ∇F (x0, y0) · ẋ.

Thus ẋ = f(x) is also tangent to the solution curve x(t).

In the case of planar vectors fields, we often provide a sketch the flow by drawing some
representative set of solution curves, with arrows on them indicating the direction of the flow.
Such a sketch is called a phase portrait.


