
M2AA1 progress test 16 March 2009, 16:00-17:00

Please attempt all parts of the questions (since they are often unrelated).

1. Consider the ODE
dx

dt
= f(x, λ) = sin(λ) + λ cos(x) + x2,

with x ∈ R, and λ ∈ R a parameter.

(a) (i) Use the Implicit Function Theorem to show that the equilibrium x = 0 at parameter value

λ = 0 lies on a (locally unique) curve of equilibria in the (λ, x)-plane.

(ii) Show that this curve may be approximated as λ(x) = −1
2x

2 + O(x3). Sketch the

corresponding bifurcation diagram (of equilibria) in the (λ, x)-plane.

(iii) Sketch the phase portraits of the flow (near x = 0) in the cases λ < 0, λ = 0 and λ > 0.

(b) (i) Let h(λ) := f(0, λ). Consider the graphs z = h(λ) and z = 0 in the two-dimensional

(λ, z)-plane. Show that these graphs have a transverse intersection in the point (λ, z) =
(0, 0). Discuss how the ”persistence” of transverse intersections relates to the application

of the Implicit Function Theorem in part (a)(i).

(ii) Consider the set of equilibria (x, λ) (such that f(x, λ) = 0), as the intersection of the

graphs z = 0 and z = f(x, λ) in R3 (with coordinates (x, λ, z)). Show that these graphs

intersect transversely in (x, λ, z) = (0, 0, 0), and use the dimension formula for transverse

intersections to explain why the set of equilibria of f near (x, λ) = (0, 0) is one-dimensional

(i.e. a curve).

2. Consider the ODE 
ẋ1 = −2x2 + x2x3 − εx3

1,

ẋ2 = x1 − x1x3 − εx3
2,

ẋ3 = x1x2 − εx3
3,

where ε ∈ R is a non-negative parameter (i.e. ε ≥ 0).

(a) Show that (x1, x2, x3) = (0, 0, 0) is a non-hyperbolic equilibrium point.

(b) Determine the linear approximation of this ODE near the equilibrium point and describe its

flow.

(c) Show that V (x1, x2, x3) = x2
1 + 2x2

2 + x2
3 is a Lyapunov function for this ODE.

(d) Show that (0, 0, 0) is asymptotically stable if and only if ε > 0.



answers

1. (a) (i) [5 pts] ∂
∂λf(0, 0) = 1 hence by the IFT there exists unique λ(x) with x close to 0 and

λ(0) = 0 such that f(x, λ(x)) = 0.

(ii) [5 pts] Either by substituting λ(x) = ax + bx2 + O(x3) and solving f(x, λ) = 0 up to

degree 2:

ax+ bx2 + (ax+ bx2) + x2 +O(x3) = 0 ⇔ a = 0, b = −1
2
.

Or by differentiation: d
dxf(x, λ(x))|x=0 = 2λ′(0) = 0 ⇒ λ′(0) = 0 and

d2

dx2 f(x, λ(x))|x=0 = 0 implying (after some writing out) that λ′′(0) = −1.

(iii) [6 pts] At λ = −1
2x

2 +O(x3) we have ∂
∂xf(0, 0) = 2x+O(x3) so that the equilibria with

small |x| have positive derivative if x > 0 (instability) and negative derivative if x < 0
(stability). Hence the phase portraits sketches are as shown.

(b) (i) [4 pts] h(0) = 0 so the graphs intersect and since d
dλh(0) = ∂

∂λf(0, 0) = 1 6= 0, the

tangent to the graph of h (of the form (1, ddλh(0))T ) is linearly independent from the

tangent to the graph z = 0 (with tangent (1, 0)). A key result of transversality is that

transverse intersections locally persist, i.e. have a unique continuation if f is changed in

a smooth way. So if we here consider changing x away from 0, it is like perturbing the

function h(λ) = f(0, λ) to the function h̃(λ) = f(x, λ), so that the solution λ = 0 will

change to a locally unique solution λ(x) near 0, which is in line with the conclusion of the

IFT.

(ii) [4 pts BONUS] The intersection is transverse if the tangent vectors to the graphs

of f and 0 span the R3. As the plane z = 0 has tangent vectors in the vector

space generated by (1, 0, 0)T and (0, 1, 0)T , we mainly need to show that there is a

tangent vector with nonzero z-component in the tangent space to the graph of f in

(0, 0, 0). The vector (0, 1, ∂∂λf(0, 0)) is such a tangent vector. Hence these graphs

intersect transversely. The dimension formula for transverse intersections asserts that

dim(graph of f) + dim(graph of 0) − dim(R3) = dim((graph of f) ∩ (graph of 0)) so

that the latter is equal to 2 + 2− 3 = 1.



2. (a) [5 pts] rhs is zero if x1 = x2 = x3 = 0 thus (0, 0, 0) is equilibrium.

Df(0, 0, 0) =

 0 −2 0
1 0 0
0 0 0

 .

So Df(0, 0, 0) has eigenvalues 0,±
√

2i all on the real axis so equilibrium is not hyperbolic.

(b) [5 pts] ẋ = Df(0, 0, 0)x. All solutions have x3 constant and the x1, x2 variables oscillate

periodically (with period
√

2π) around x1 = x2 = 0. So we have a line of equilibria and around

that periodic solutions in all planes x3 =constant.

(c) [4 pts] First V (x) ≥ 0 and V (x) = 0 iff x = 0. Moreover,

d

dt
V (x) = 2x1ẋ1 + 4x2ẋ2 + 2x3ẋ3

= 2x1(−2x2 + x2x3 − εx3
1) + 4x2(x1 − x1x3 − εx3

2) + 2x3(x1x2 − εx3
3)

= −ε(2x4
1 + 4x4

2 + 2x4
3) ≤ 0 since ε ≥ 0.

(d) [4 pts] If ε > 0 then d
dtV (x) < 0 for all x 6= 0 and hence (by thm of course) x = 0 is

asymptotically stable.

[2 pts] If ε = 0 then V̇ (x) = 0 for all x so that solution never escape from a level set,

ie V (x(t)) = V (x(0)) for all t. This in turn implies that solutions cannot converge to the

equilibrium (with V = 0) unless the initial condition is on the equilibrium (unique point with

V = 0). So if ε = 0 the equilibrium is Lyapunov stable (since V is Lyapunov function) but in

that case the equilibrium is not asymptotically stable.


