M2AA1 progress test 16 March 2009, 16:00-17:00

Please attempt all parts of the questions (since they are often unrelated).

1. Consider the ODE

$$
\frac{d x}{d t}=f(x, \lambda)=\sin (\lambda)+\lambda \cos (x)+x^{2},
$$

with $x \in \mathbb{R}$, and $\lambda \in \mathbb{R}$ a parameter.
(a) (i) Use the Implicit Function Theorem to show that the equilibrium $x=0$ at parameter value $\lambda=0$ lies on a (locally unique) curve of equilibria in the (λ, x)-plane.
(ii) Show that this curve may be approximated as $\lambda(x)=-\frac{1}{2} x^{2}+O\left(x^{3}\right)$. Sketch the corresponding bifurcation diagram (of equilibria) in the (λ, x)-plane.
(iii) Sketch the phase portraits of the flow (near $x=0$) in the cases $\lambda<0, \lambda=0$ and $\lambda>0$.
(b) (i) Let $h(\lambda):=f(0, \lambda)$. Consider the graphs $z=h(\lambda)$ and $z=0$ in the two-dimensional (λ, z)-plane. Show that these graphs have a transverse intersection in the point $(\lambda, z)=$ $(0,0)$. Discuss how the "persistence" of transverse intersections relates to the application of the Implicit Function Theorem in part (a)(i).
(ii) Consider the set of equilibria (x, λ) (such that $f(x, \lambda)=0$), as the intersection of the graphs $z=0$ and $z=f(x, \lambda)$ in \mathbb{R}^{3} (with coordinates (x, λ, z)). Show that these graphs intersect transversely in $(x, \lambda, z)=(0,0,0)$, and use the dimension formula for transverse intersections to explain why the set of equilibria of f near $(x, \lambda)=(0,0)$ is one-dimensional (i.e. a curve).
2. Consider the ODE

$$
\left\{\begin{array}{l}
\dot{x}_{1}=-2 x_{2}+x_{2} x_{3}-\varepsilon x_{1}^{3}, \\
\dot{x}_{2}=x_{1}-x_{1} x_{3}-\varepsilon x_{2}^{3}, \\
\dot{x}_{3}=x_{1} x_{2}-\varepsilon x_{3}^{3},
\end{array}\right.
$$

where $\varepsilon \in \mathbb{R}$ is a non-negative parameter (i.e. $\varepsilon \geq 0$).
(a) Show that $\left(x_{1}, x_{2}, x_{3}\right)=(0,0,0)$ is a non-hyperbolic equilibrium point.
(b) Determine the linear approximation of this ODE near the equilibrium point and describe its flow.
(c) Show that $V\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+2 x_{2}^{2}+x_{3}^{2}$ is a Lyapunov function for this ODE.
(d) Show that $(0,0,0)$ is asymptotically stable if and only if $\varepsilon>0$.

answers

1. (a) (i) [5 pts] $\frac{\partial}{\partial \lambda} f(0,0)=1$ hence by the IFT there exists unique $\lambda(x)$ with x close to 0 and $\lambda(0)=0$ such that $f(x, \lambda(x))=0$.
(ii) [5 pts] Either by substituting $\lambda(x)=a x+b x^{2}+O\left(x^{3}\right)$ and solving $f(x, \lambda)=0$ up to degree 2 :

$$
a x+b x^{2}+\left(a x+b x^{2}\right)+x^{2}+O\left(x^{3}\right)=0 \Leftrightarrow a=0, b=-\frac{1}{2}
$$

Or by differentiation: $\left.\frac{d}{d x} f(x, \lambda(x))\right|_{x=0}=2 \lambda^{\prime}(0)=0 \Rightarrow \lambda^{\prime}(0)=0$ and $\left.\frac{d^{2}}{d x^{2}} f(x, \lambda(x))\right|_{x=0}=0$ implying (after some writing out) that $\lambda^{\prime \prime}(0)=-1$.
(iii) [6 pts] At $\lambda=-\frac{1}{2} x^{2}+O\left(x^{3}\right)$ we have $\frac{\partial}{\partial x} f(0,0)=2 x+O\left(x^{3}\right)$ so that the equilibria with small $|x|$ have positive derivative if $x>0$ (instability) and negative derivative if $x<0$ (stability). Hence the phase portraits sketches are as shown.

(b) (i) [4 pts] $h(0)=0$ so the graphs intersect and since $\frac{d}{d \lambda} h(0)=\frac{\partial}{\partial \lambda} f(0,0)=1 \neq 0$, the tangent to the graph of h (of the form $\left(1, \frac{d}{d \lambda} h(0)\right)^{T}$) is linearly independent from the tangent to the graph $z=0$ (with tangent $(1,0)$). A key result of transversality is that transverse intersections locally persist, i.e. have a unique continuation if f is changed in a smooth way. So if we here consider changing x away from 0 , it is like perturbing the function $h(\lambda)=f(0, \lambda)$ to the function $\widetilde{h}(\lambda)=f(x, \lambda)$, so that the solution $\lambda=0$ will change to a locally unique solution $\lambda(x)$ near 0 , which is in line with the conclusion of the IFT.
(ii) [4 pts BONUS] The intersection is transverse if the tangent vectors to the graphs of f and 0 span the \mathbb{R}^{3}. As the plane $z=0$ has tangent vectors in the vector space generated by $(1,0,0)^{T}$ and $(0,1,0)^{T}$, we mainly need to show that there is a tangent vector with nonzero z-component in the tangent space to the graph of f in $(0,0,0)$. The vector $\left(0,1, \frac{\partial}{\partial \lambda} f(0,0)\right)$ is such a tangent vector. Hence these graphs intersect transversely. The dimension formula for transverse intersections asserts that $\operatorname{dim}($ graph of $f)+\operatorname{dim}($ graph of 0$)-\operatorname{dim}\left(\mathbb{R}^{3}\right)=\operatorname{dim}(($ graph of $f) \cap($ graph of 0$))$ so that the latter is equal to $2+2-3=1$.
2. (a) [5 pts] rhs is zero if $x_{1}=x_{2}=x_{3}=0$ thus $(0,0,0)$ is equilibrium.

$$
D f(0,0,0)=\left(\begin{array}{ccc}
0 & -2 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

So $D f(0,0,0)$ has eigenvalues $0, \pm \sqrt{2} i$ all on the real axis so equilibrium is not hyperbolic.
(b) [5 pts] $\dot{\mathbf{x}}=D f(0,0,0) \mathbf{x}$. All solutions have x_{3} constant and the x_{1}, x_{2} variables oscillate periodically (with period $\sqrt{2} \pi$) around $x_{1}=x_{2}=0$. So we have a line of equilibria and around that periodic solutions in all planes $x_{3}=$ constant.
(c) [4 pts] First $V(\mathbf{x}) \geq 0$ and $V(\mathbf{x})=0$ iff $\mathbf{x}=0$. Moreover,

$$
\begin{aligned}
\frac{d}{d t} V(\mathbf{x}) & =2 x_{1} \dot{x}_{1}+4 x_{2} \dot{x}_{2}+2 x_{3} \dot{x}_{3} \\
& =2 x_{1}\left(-2 x_{2}+x_{2} x_{3}-\varepsilon x_{1}^{3}\right)+4 x_{2}\left(x_{1}-x_{1} x_{3}-\varepsilon x_{2}^{3}\right)+2 x_{3}\left(x_{1} x_{2}-\varepsilon x_{3}^{3}\right) \\
& =-\varepsilon\left(2 x_{1}^{4}+4 x_{2}^{4}+2 x_{3}^{4}\right) \leq 0 \text { since } \varepsilon \geq 0
\end{aligned}
$$

(d) [4 pts] If $\varepsilon>0$ then $\frac{d}{d t} V(\mathbf{x})<0$ for all $\mathbf{x} \neq 0$ and hence (by thm of course) $\mathbf{x}=0$ is asymptotically stable.
[2 pts] If $\varepsilon=0$ then $\dot{V}(\mathbf{x})=0$ for all \mathbf{x} so that solution never escape from a level set, ie $V(\mathbf{x}(t))=V(\mathbf{x}(0))$ for all t. This in turn implies that solutions cannot converge to the equilibrium (with $V=0$) unless the initial condition is on the equilibrium (unique point with $V=0$). So if $\varepsilon=0$ the equilibrium is Lyapunov stable (since V is Lyapunov function) but in that case the equilibrium is not asymptotically stable.

