

like. Mathematically, this event is a jump from the basin of P to that of $(0, b)$.

 has led to a dramatic change in the fate of populations. Ecologically, this small
 left of Z, solutions tend to an equilibrium point where $x=0$. Thus in this the populations in this case tend to stabilize. On the other hand, just to the solutions just to the right of Z tend to the equilibrium point P, it follows that curve containing Z, the limiting behavior of solutions changes radically. Since points to the right go to P. Thus as we move across the branch of the stable region denoted B_{∞} to the left of Z tend to the equilibrium at $(0, b)$, while point Z lies on one branch of the stable curve through Q. All points in the because certain nearby solutions tend toward it, while others tend away. The that the equilibrium Q in Figure 11.14 is hyperbolic, then it must be a saddle asymptotically stable; all other equilibria are unstable. In particular, assuming
For example, this analysis tells us that, in Figure 11.14, only P and $(0, b)$ are

where $a>0$ is a parameter

$k x-(x-\mathrm{I}) x=, x$
2.) Sketch the phase plane for the following variant of the predator/prey exceed the threshold level for the disease. tend to the equilibrium point $(\tau, 0)$ when the total population does not

EXERCISES

5. Describe the full three-dimensional parameter space using pictures, flip
books, 3D models, movies, or whatever you find most appropriate. Repeat the previous exploration for $h>0$.
(paxy) snouren .од әurן when $h=0$ and describe them.

6. First assume that $h=0$. Give a complete synopsis of the behavior of this become extinct.

 harvesting species y at a constant rate, whereas if $h>0$, we add to the popula-

$$
\begin{aligned}
& +(\Lambda-x-q) K=\Lambda \\
& (\Lambda-x v-\tau) x=, x
\end{aligned}
$$ \[

x^{\prime}=x(2-x-y),
\]

$y^{\prime}=y(3-2 x-y)$
satisfy conditions (1) through (3) in Section 11.3 for competing species.
Determine the phase portrait for this system. Explain why these equations
make it mathematically possible, but extremely unlikely, for both species
to survive.
6. Consider the competing species model

$$
x^{\prime}=x(a-x-a y)
$$

$$
y^{\prime}=y(b-b x-y)
$$

where the parameters a and b are positive.
(a) Find all equilibrium points for this system and determine their
stability type. These types will, of course, depend on a and b.
(b) Use the nullclines to determine the various phase portraits that arise
for different choices of a and b.
(c) Determine the values of a and b for which there is a bifurcation in
this system and describe the bifurcation that occurs.
(d) Record your findings by drawing a picture of the $a b-$ plane and
indicating in each open region of this plane the qualitative structure

of the corresponding phase portraits. $$
x^{\prime}=x(2-x-y),
$$

$y^{\prime}=y(3-2 x-y)$
satisfy conditions (1) through (3) in Section 11.3 for competing species.
Determine the phase portrait for this system. Explain why these equations
make it mathematically possible, but extremely unlikely, for both species
to survive.
6. Consider the competing species model

$$
x^{\prime}=x(a-x-a y)
$$

$$
y^{\prime}=y(b-b x-y)
$$

where the parameters a and b are positive.
(a) Find all equilibrium points for this system and determine their
stability type. These types will, of course, depend on a and b.
(b) Use the nullclines to determine the various phase portraits that arise
for different choices of a and b.
(c) Determine the values of a and b for which there is a bifurcation in
this system and describe the bifurcation that occurs.
(d) Record your findings by drawing a picture of the $a b-$ plane and
indicating in each open region of this plane the qualitative structure

of the corresponding phase portraits. $$
x^{\prime}=x(2-x-y),
$$

$y^{\prime}=y(3-2 x-y)$
satisfy conditions (1) through (3) in Section 11.3 for competing species.
Determine the phase portrait for this system. Explain why these equations
make it mathematically possible, but extremely unlikely, for both species
to survive.
6. Consider the competing species model

$$
x^{\prime}=x(a-x-a y)
$$

$$
y^{\prime}=y(b-b x-y)
$$

where the parameters a and b are positive.
(a) Find all equilibrium points for this system and determine their
stability type. These types will, of course, depend on a and b.
(b) Use the nullclines to determine the various phase portraits that arise
for different choices of a and b.
(c) Determine the values of a and b for which there is a bifurcation in
this system and describe the bifurcation that occurs.
(d) Record your findings by drawing a picture of the $a b-$ plane and
indicating in each open region of this plane the qualitative structure

of the corresponding phase portraits. $$
x^{\prime}=x(2-x-y),
$$

$y^{\prime}=y(3-2 x-y)$
satisfy conditions (1) through (3) in Section 11.3 for competing species.
Determine the phase portrait for this system. Explain why these equations
make it mathematically possible, but extremely unlikely, for both species
to survive.
6. Consider the competing species model

$$
x^{\prime}=x(a-x-a y)
$$

$$
y^{\prime}=y(b-b x-y)
$$

where the parameters a and b are positive.
(a) Find all equilibrium points for this system and determine their
stability type. These types will, of course, depend on a and b.
(b) Use the nullclines to determine the various phase portraits that arise
for different choices of a and b.
(c) Determine the values of a and b for which there is a bifurcation in
this system and describe the bifurcation that occurs.
(d) Record your findings by drawing a picture of the $a b-$ plane and
indicating in each open region of this plane the qualitative structure
of the corresponding phase portraits.
(c) Describe any bifurcations that occur as b varies.
(b) Sketch the nullclines and the phase portraits for different values (a) Find all equilibrium points and classify them.
where $b>0$ is a parameter.

$(K-\mathrm{I}) K=, \Lambda$
 $x^{\prime}=x(1-x)-\frac{x y}{x+b}$

Another modification of the predator/prey equations is given by (c) Describe any bifurcations that occur as a varies.
(b) Sketch the nullclines and the phase portraits for different values of a

(a) Find all equilibrium points and classify them $$
x^{\prime}=x(2-x-y),
$$

$y^{\prime}=y(3-2 x-y)$
satisfy conditions (1) through (3) in Section 11.3 for competing species.
Determine the phase portrait for this system. Explain why these equations
make it mathematically possible, but extremely unlikely, for both species
to survive.
6. Consider the competing species model

$$
x^{\prime}=x(a-x-a y)
$$

$$
y^{\prime}=y(b-b x-y)
$$

where the parameters a and b are positive.
(a) Find all equilibrium points for this system and determine their
stability type. These types will, of course, depend on a and b.
(b) Use the nullclines to determine the various phase portraits that arise
for different choices of a and b.
(c) Determine the values of a and b for which there is a bifurcation in
this system and describe the bifurcation that occurs.
(d) Record your findings by drawing a picture of the $a b-$ plane and
indicating in each open region of this plane the qualitative structure

of the corresponding phase portraits. $$
x^{\prime}=x(2-x-y),
$$

$y^{\prime}=y(3-2 x-y)$
satisfy conditions (1) through (3) in Section 11.3 for competing species.
Determine the phase portrait for this system. Explain why these equations
make it mathematically possible, but extremely unlikely, for both species
to survive.
6. Consider the competing species model

$$
x^{\prime}=x(a-x-a y)
$$

$$
y^{\prime}=y(b-b x-y)
$$

where the parameters a and b are positive.
(a) Find all equilibrium points for this system and determine their
stability type. These types will, of course, depend on a and b.
(b) Use the nullclines to determine the various phase portraits that arise
for different choices of a and b.
(c) Determine the values of a and b for which there is a bifurcation in
this system and describe the bifurcation that occurs.
(d) Record your findings by drawing a picture of the $a b-$ plane and
indicating in each open region of this plane the qualitative structure

of the corresponding phase portraits. $$
x^{\prime}=x(2-x-y),
$$

$y^{\prime}=y(3-2 x-y)$
satisfy conditions (1) through (3) in Section 11.3 for competing species.
Determine the phase portrait for this system. Explain why these equations
make it mathematically possible, but extremely unlikely, for both species
to survive.
6. Consider the competing species model

$$
x^{\prime}=x(a-x-a y)
$$

$$
y^{\prime}=y(b-b x-y)
$$

where the parameters a and b are positive.
(a) Find all equilibrium points for this system and determine their
stability type. These types will, of course, depend on a and b.
(b) Use the nullclines to determine the various phase portraits that arise
for different choices of a and b.
(c) Determine the values of a and b for which there is a bifurcation in
this system and describe the bifurcation that occurs.
(d) Record your findings by drawing a picture of the $a b-$ plane and
indicating in each open region of this plane the qualitative structure

of the corresponding phase portraits. $$
x^{\prime}=x(2-x-y),
$$

$y^{\prime}=y(3-2 x-y)$
satisfy conditions (1) through (3) in Section 11.3 for competing species.
Determine the phase portrait for this system. Explain why these equations
make it mathematically possible, but extremely unlikely, for both species
to survive.
6. Consider the competing species model

$$
x^{\prime}=x(a-x-a y)
$$

$$
y^{\prime}=y(b-b x-y)
$$

where the parameters a and b are positive.
(a) Find all equilibrium points for this system and determine their
stability type. These types will, of course, depend on a and b.
(b) Use the nullclines to determine the various phase portraits that arise
for different choices of a and b.
(c) Determine the values of a and b for which there is a bifurcation in
this system and describe the bifurcation that occurs.
(d) Record your findings by drawing a picture of the $a b-$ plane and
indicating in each open region of this plane the qualitative structure

of the corresponding phase portraits. $$
x^{\prime}=x(2-x-y),
$$

$y^{\prime}=y(3-2 x-y)$
satisfy conditions (1) through (3) in Section 11.3 for competing species.
Determine the phase portrait for this system. Explain why these equations
make it mathematically possible, but extremely unlikely, for both species
to survive.
6. Consider the competing species model

$$
x^{\prime}=x(a-x-a y)
$$

$$
y^{\prime}=y(b-b x-y)
$$

where the parameters a and b are positive.
(a) Find all equilibrium points for this system and determine their
stability type. These types will, of course, depend on a and b.
(b) Use the nullclines to determine the various phase portraits that arise
for different choices of a and b.
(c) Determine the values of a and b for which there is a bifurcation in
this system and describe the bifurcation that occurs.
(d) Record your findings by drawing a picture of the $a b-$ plane and
indicating in each open region of this plane the qualitative structure

of the corresponding phase portraits. $$
x^{\prime}=x(2-x-y),
$$

$y^{\prime}=y(3-2 x-y)$
satisfy conditions (1) through (3) in Section 11.3 for competing species.
Determine the phase portrait for this system. Explain why these equations
make it mathematically possible, but extremely unlikely, for both species
to survive.
6. Consider the competing species model

$$
x^{\prime}=x(a-x-a y)
$$

$$
y^{\prime}=y(b-b x-y)
$$

where the parameters a and b are positive.
(a) Find all equilibrium points for this system and determine their
stability type. These types will, of course, depend on a and b.
(b) Use the nullclines to determine the various phase portraits that arise
for different choices of a and b.
(c) Determine the values of a and b for which there is a bifurcation in
this system and describe the bifurcation that occurs.
(d) Record your findings by drawing a picture of the $a b-$ plane and
indicating in each open region of this plane the qualitative structure

of the corresponding phase portraits. $$
x^{\prime}=x(2-x-y),
$$

$y^{\prime}=y(3-2 x-y)$
satisfy conditions (1) through (3) in Section 11.3 for competing species.
Determine the phase portrait for this system. Explain why these equations
make it mathematically possible, but extremely unlikely, for both species
to survive.
6. Consider the competing species model

$$
x^{\prime}=x(a-x-a y)
$$

$$
y^{\prime}=y(b-b x-y)
$$

where the parameters a and b are positive.
(a) Find all equilibrium points for this system and determine their
stability type. These types will, of course, depend on a and b.
(b) Use the nullclines to determine the various phase portraits that arise
for different choices of a and b.
(c) Determine the values of a and b for which there is a bifurcation in
this system and describe the bifurcation that occurs.
(d) Record your findings by drawing a picture of the $a b-$ plane and
indicating in each open region of this plane the qualitative structure

of the corresponding phase portraits. $$
x^{\prime}=x(2-x-y),
$$

$y^{\prime}=y(3-2 x-y)$
satisfy conditions (1) through (3) in Section 11.3 for competing species.
Determine the phase portrait for this system. Explain why these equations
make it mathematically possible, but extremely unlikely, for both species
to survive.
6. Consider the competing species model

$$
x^{\prime}=x(a-x-a y)
$$

$$
y^{\prime}=y(b-b x-y)
$$

where the parameters a and b are positive.
(a) Find all equilibrium points for this system and determine their
stability type. These types will, of course, depend on a and b.
(b) Use the nullclines to determine the various phase portraits that arise
for different choices of a and b.
(c) Determine the values of a and b for which there is a bifurcation in
this system and describe the bifurcation that occurs.
(d) Record your findings by drawing a picture of the $a b-$ plane and
indicating in each open region of this plane the qualitative structure

of the corresponding phase portraits. $$
x^{\prime}=x(2-x-y),
$$

$y^{\prime}=y(3-2 x-y)$
satisfy conditions (1) through (3) in Section 11.3 for competing species.
Determine the phase portrait for this system. Explain why these equations
make it mathematically possible, but extremely unlikely, for both species
to survive.
6. Consider the competing species model

$$
x^{\prime}=x(a-x-a y)
$$

$$
y^{\prime}=y(b-b x-y)
$$

where the parameters a and b are positive.
(a) Find all equilibrium points for this system and determine their
stability type. These types will, of course, depend on a and b.
(b) Use the nullclines to determine the various phase portraits that arise
for different choices of a and b.
(c) Determine the values of a and b for which there is a bifurcation in
this system and describe the bifurcation that occurs.
(d) Record your findings by drawing a picture of the $a b-$ plane and
indicating in each open region of this plane the qualitative structure

of the corresponding phase portraits. $$
x^{\prime}=x(2-x-y),
$$

$y^{\prime}=y(3-2 x-y)$
satisfy conditions (1) through (3) in Section 11.3 for competing species.
Determine the phase portrait for this system. Explain why these equations
make it mathematically possible, but extremely unlikely, for both species
to survive.
6. Consider the competing species model

$$
x^{\prime}=x(a-x-a y)
$$

$$
y^{\prime}=y(b-b x-y)
$$

where the parameters a and b are positive.
(a) Find all equilibrium points for this system and determine their
stability type. These types will, of course, depend on a and b.
(b) Use the nullclines to determine the various phase portraits that arise
for different choices of a and b.
(c) Determine the values of a and b for which there is a bifurcation in
this system and describe the bifurcation that occurs.
(d) Record your findings by drawing a picture of the $a b-$ plane and
indicating in each open region of this plane the qualitative structure

of the corresponding phase portraits. $$
x^{\prime}=x(2-x-y),
$$

$y^{\prime}=y(3-2 x-y)$
satisfy conditions (1) through (3) in Section 11.3 for competing species.
Determine the phase portrait for this system. Explain why these equations
make it mathematically possible, but extremely unlikely, for both species
to survive.
6. Consider the competing species model

$$
x^{\prime}=x(a-x-a y)
$$

$$
y^{\prime}=y(b-b x-y)
$$

where the parameters a and b are positive.
(a) Find all equilibrium points for this system and determine their
stability type. These types will, of course, depend on a and b.
(b) Use the nullclines to determine the various phase portraits that arise
for different choices of a and b.
(c) Determine the values of a and b for which there is a bifurcation in
this system and describe the bifurcation that occurs.
(d) Record your findings by drawing a picture of the $a b-$ plane and
indicating in each open region of this plane the qualitative structure

of the corresponding phase portraits. $$
x^{\prime}=x(2-x-y),
$$

$y^{\prime}=y(3-2 x-y)$
satisfy conditions (1) through (3) in Section 11.3 for competing species.
Determine the phase portrait for this system. Explain why these equations
make it mathematically possible, but extremely unlikely, for both species
to survive.
6. Consider the competing species model

$$
x^{\prime}=x(a-x-a y)
$$

$$
y^{\prime}=y(b-b x-y)
$$

where the parameters a and b are positive.
(a) Find all equilibrium points for this system and determine their
stability type. These types will, of course, depend on a and b.
(b) Use the nullclines to determine the various phase portraits that arise
for different choices of a and b.
(c) Determine the values of a and b for which there is a bifurcation in
this system and describe the bifurcation that occurs.
(d) Record your findings by drawing a picture of the $a b-$ plane and
indicating in each open region of this plane the qualitative structure

of the corresponding phase portraits. $$
x^{\prime}=x(2-x-y),
$$

$y^{\prime}=y(3-2 x-y)$
satisfy conditions (1) through (3) in Section 11.3 for competing species.
Determine the phase portrait for this system. Explain why these equations
make it mathematically possible, but extremely unlikely, for both species
to survive.
6. Consider the competing species model

$$
x^{\prime}=x(a-x-a y)
$$

$$
y^{\prime}=y(b-b x-y)
$$

where the parameters a and b are positive.
(a) Find all equilibrium points for this system and determine their
stability type. These types will, of course, depend on a and b.
(b) Use the nullclines to determine the various phase portraits that arise
for different choices of a and b.
(c) Determine the values of a and b for which there is a bifurcation in
this system and describe the bifurcation that occurs.
(d) Record your findings by drawing a picture of the $a b-$ plane and
indicating in each open region of this plane the qualitative structure

of the corresponding phase portraits. $$
x^{\prime}=x(2-x-y),
$$

$y^{\prime}=y(3-2 x-y)$
satisfy conditions (1) through (3) in Section 11.3 for competing species.
Determine the phase portrait for this system. Explain why these equations
make it mathematically possible, but extremely unlikely, for both species
to survive.
6. Consider the competing species model

$$
x^{\prime}=x(a-x-a y)
$$

$$
y^{\prime}=y(b-b x-y)
$$

where the parameters a and b are positive.
(a) Find all equilibrium points for this system and determine their
stability type. These types will, of course, depend on a and b.
(b) Use the nullclines to determine the various phase portraits that arise
for different choices of a and b.
(c) Determine the values of a and b for which there is a bifurcation in
this system and describe the bifurcation that occurs.
(d) Record your findings by drawing a picture of the $a b$-plane and
indicating in each open region of this plane the qualitative structure
of the corresponding phase portraits.
(a) Find all equilibrium points and classify them.
(b) Sketch the nullclines and the phase portraits for different values of a.
(c) Describe any bifurcations that occur as a varies.
4. Another modification of the predator/prey equations is given by

$$
x^{\prime}=x(1-x)-\frac{x y}{x+b}
$$

$$
y^{\prime}=y(1-y)
$$

where $b>0$ is a parameter.
(a) Find all equilibrium points and classify them.
(b) Sketch the nullclines and the phase portraits for different values
(c) Describe any bifurcations that occur as b varies.
(5. The equations
(0)

 parameter space for which this system has a stable equilibrium with both

$$
\begin{aligned}
\left(\frac{x}{\Lambda}-\mathrm{I}\right) \kappa q & =1 \\
\frac{0+x}{1 x v}-(x-\mathrm{I}) x & =x
\end{aligned}
$$

 Moreoner, show the
one of them must have orbits spiraling toward it from both sides.. there is either an asymptotically stable equilibrium or an ω-limit cycle.
Moreover, show that, if the number of limit cycles is finite and Show that if there is some (u, v) with $M(u, v)>0$ and $N(u, v)>0$ then finite number of points.

Any increase in predators decreases the rate of growth of prey; hence
$\partial M / \partial y<0$. Beyond a certain size, the prey population must decrease; hence
there exists $A>0$ with $M(x, y)<0$ if $x>A$. hence $M(0,0)>0$.
(c) In the absence of predators a small prey population will increase; 0<xe/ne
(b) An increase in the prey improves the predator growth rate; hence

4. Consider the following model of the chemical reaction between two substances whose concentrations are denoted by x and y, respectively:

$$
\begin{aligned}
& \frac{d x}{d t}=a-x-\frac{4 x y}{1+x^{2}} \\
& \frac{d y}{d t}=x\left(1-\frac{y}{1+x^{2}}\right)
\end{aligned}
$$

Here a is a positive parameter. Note also that as x and y represent concentrations, we are only interested in $x, y \geq 0$. The model serves to illustrate that chemical reactions may yield asymptotic solutions that oscillate instead of being stationary.
(a) (i) Show that there is a unique equilibrium and that at this equilibrium the derivative of the vector field (Jacobian) is equal to

$$
\frac{1}{25+a^{2}}\left(\begin{array}{rr}
-125+3 a^{2} & -20 a \\
2 a^{2} & -5 a
\end{array}\right) .
$$

(ii) Show that the equilibrium is asymptotically stable if $a<\frac{5}{6}(1+\sqrt{61})$ and asymptotically unstable if $a>\frac{5}{6}(1+\sqrt{61})$.
[You may apply the derivative test without proof. Hint: Recall that the eigenvalues of a 2×2 matrix A are given by $\lambda_{ \pm}=\operatorname{tr}(A) / 2 \pm \sqrt{(\operatorname{tr}(A) / 2)^{2}-\operatorname{det}(A)}$, where $\operatorname{tr}(A)$ denotes the trace of A and $\operatorname{det}(A)$ its determinant.]
(b) Show that
(i) The quadrant $\{(x, y) \mid x \geq 0, \mathbf{y} \geq 0\}$ is positive flow-invariant.
(ii) All ω-limit sets of the flow are contained in the region

$$
B_{a}:=\left\{(x, y) \mid a \geq x \geq 0,1+a^{2} \geq y \geq 0\right\}
$$

[Hint: consider the flow through the boundary of B_{c} for all $c \geq a$.]
(iii) Apply the Poincaré-Bendixson Theorem to show that there exists a periodic solution in B_{a} if $a>\frac{5}{6}(1+\sqrt{61})$, and that this periodic solution must encircle the equilibrium.
(c) Suppose that the equilibrium is the unique ω-limit set of the ODE when $a<\frac{5}{6}(1+\sqrt{61})$. What stability property would you expect for the equilibrium at $a=\frac{5}{6}(1+\sqrt{61})$? Motivate your answer.

