
M2AA1 Differential Equations

Exercise sheet 6 answers

1. We write f(x, λ) with x = (x, y) ∈ R2. It is also easier to treat f(x, λ) ∈ R2 as a column vector. Then the

Jacobian for x = 0 at λ = 0 is given by D1f(0, 0) =

(

2 1
2 1

)

, so that we have kerD1f(0, 0) =

〈(

1
−2

)〉

and rangeD1f(0, 0) =

〈(

1
1

)〉

. We may choose (for instance) the complementary spaces as C = C̃ =
〈(

1
0

)〉

other choices will lead to different details in the computations, but of course in the end to the

same overall result). In order to find f1 and f2 we determine the projections P1 and P2 so that for all x ∈ R2

we have x = P1x + P2x with P1x ∈ rangeD1f(0, 0) and P2 ∈ C̃. P1 is defined by the fact that

P1

(

1
1

)

=

(

1
1

)

and P1

(

1
0

)

=

(

0
0

)

⇒ P1 =

(

0 1
0 1

)

, P2 = I − P1 =

(

1 −1
0 0

)

.

We define f1 = P1 ◦ f and f2 = P2 ◦ f to obtain

f(x, λ) = 0 ⇔
{

f1(x, λ) = 2x + (1 + λ)y − xy = 0,
f2(x, λ) = λ − x2 − λy + xy = 0.

(It should be noted that I here suppressed the fact that of course the formulas for f1 and f2 should be
formally multiplied by the relevant basis vectors of rangeD1f(0, 0) and C̃, respectively. But of course the
zeros of f correspond to zeros of the system made up of f1 and f2.) We are now left to write x ∈ R2 as a
sum of vectors P3x ∈ kerD1f(0, 0) and P4x ∈ C. It follows that

P3 =

(

0 −1
2

0 1

)

, P4 = I − P3 =

(

1 1
2

0 0

)

⇒
(

x
y

)

= −y

2

(

1
−2

)

+ (x +
y

2
)

(

1
0

)

.

So with new coordinates u, v with respect to the basis vector of kerD1f(0, 0) and C, i.e. (x, y)T = u(1,−2)T +
v(1, 0)T we have y = −2u and x = v + u. These leads us, in terms of this new coordinates to the following
expressions

f1 : kerD1f(0, 0) × C × R → rangeD1f(0, 0), f1(u, v, λ) = 2v − 2λu + 2uv + 2u2

f2 : kerD1f(0, 0) × C × R → C̃, f2(u, v, λ) = λ + 2λu − 3u2 − 4uv − v2.

It is readily verified that D2f1(0, 0, 0) = 2 6= 0 and D1f2(0, 0, 0) = 0 as guaranteed by the construction of f1

and f2. We find
f1(u, v, λ) = 0 ⇔ v(u, λ) = (λu − u2)/(1 + u),

yielding

g(u, λ) := f2(u, v(u), λ) = λ + 2λu − 3u2 − 4u(λu − u2)

1 + u
−
(

λu − u2

1 + u

)2

.

As ∂
∂λg(0, 0) = 1 6= 0 by application of the IFT we have a unique λ(u) so that g(u, λ(u)) = 0. From the

expression of g we obtain that λ(u) near u = 0 is given by

λ(u) = 3u2 + O(u3).

Hence the solution curve in (x, y, λ)-coordinates has up to second order in u the form

(x, y, z) = (u + v(u, λ),−2u, λ(u)) = (u − u2,−2u, 3u2) + O(u3),

since v(u) = (1−u)(λu−u2)+O(u3) = λu− (λ+1)u2 +O(u3) = −u2 +O(u3). And one verifies indeed that
for this curve we have f(x, λ) = O(u3), consistent with the accuracy of our approximation to the solution.
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2. (a) Given the proposed decompositions, we use the projections P to rangeDf(0) (with kerP = C̃) and
(I − P ) to C̃ to define f1 := P ◦ f and f2 : (I − P ) ◦ f .

(b) By linearity of Df(0) we have dimC = dim rangeDf(0). Since if there were x,y ∈ C with x 6= y such
that Df(0)x = Df(0)y, then x − y ∈ kerDf(0) which contradicts the fact that C is complementary
to kerDf(0). Hence, Df(0)|C : C → rangeDf(0) is a linear onto map between two isomorphic finite
dimensional vector spaces (i.e. with the same dimension), and hence invertible. We finally show that
Df(0)C = D2f(0, 0). Consider Df(0) : kerDf(0)×C → rangeDf(0)× C̃, then in matrix form we have

Df(0) =

(

D1f1(0, 0) D2f1(0, 0)
D1f2(0, 0) D2f1(0, 0)

)

,

with all entries denoting matrices, in general. It the follows by construction that for all y ∈ C
Df(0)y = D2f1(0, 0)y + D2f2(0, 0)y ∈ rangeDf(0), which in turn implies that D2f2(0, 0)y = 0 since
rangeD2f2(0, 0) ⊂ C̃. Hence D2f1(0, 0) = Df(0)|C , and thus invertible. Similarly, Df(0)|kerDf(0) = 0

and for all x ∈ kerDf(0) we have 0 = Df(0)x = D1f1(0, 0)x + D1f2(0, 0)x ∈ C̃ implying that
0 = D1f2(0, 0)x (apply the projection (I − P ) to both sides.)

3. If L = −I, V = |x| is a Lyapunov function, since dV/dt = −|x|.

4. Note that the 2nd order ODE can be written (or thought of) as a system of two coupled first order ODEs.

(a) E = 1
2 ẋ2 + 1

2ω2x2 and d
dtE = ẋẍ + ω2xẋ = 0. x = ẋ = 0 is an absolute minimum of E. So x = ẋ = 0 is

a Lyapunov stable equilibrium.

(b) Try again E = 1
2 ẋ2 + 1

2ω2x2. Then d
dtE = ẋẍ + ω2xẋ = −εẋ2 so d

dtE < 0 unless ẋ = 0 in which case
d
dtE = 0. From this it follows that x = ẋ = 0 is a Lyapunov stable equilibrium.

If the equilibrium is not asymptotically stable, some orbit must not converge to the equilibrium. From
the proof of the theorem about Lyapunov functions we know that such an orbit must accumulate to
a solution of the ODE for which d

dtE = 0 (along the solution). But we find that on the line ẋ = 0
the vector field contains no other solutions that the equilibrium x = ẋ = 0 since whenever x 6= 0 the
vector field is always transverse to the line ẋ = 0 (so all solution curves through these points are also
transverse to this line in these points). The parameter ε > 0 can have the interpretation of a friction
coefficient (damping the velocity).

(c) We now choose, in analogy to before, E = 1
2 |ẋ|2 + 1

2ω2|x|2 and find that d
dtE = ẋ · ẍ+ω2

x · ẋ = −ε|ẋ|2,
and obtain the same conclusion as in (b).

5. This equation admits Lyapunov function V (x, y, z) = x2 + 2y2 + z2, namely

dV/dt = xẋ + 2yẏ + zż = 2xy(z − 1) − 2yx(z − 1) − z2 = −z2 ≤ 0.

Thus the origin is Lyapunov stable. On the other hand consider the solution x(t) with x(0) = (0, ε, 0) is

x(t) = (−
√

2 sin(
√

2t)ε, cos(
√

2t)ε, 0).

Obviously this solution does not tend to the origin as t → ∞. Hence the origin is not asymptotically stable.
Note that the plane z = 0 on which d

dtV = 0 is flow invariant.

6. V is a (strict) Lyapunov function for the ODE with time running backwards, yielding x0 to be asymptotically
stable for this ODE. Hence, for the ODE with time running forward the equilibrium is not Lyapunov stable.
(Maybe some more details could be given to explain the latter implication.)

7. (a) Suppose that d
dtV (y(t)) 6= 0. Then, since d

dtV ≤ 0 along all orbits, for some T sufficiently large we
have V (y(t)) < C ∀t > T . This contradicts the fact that the solution x(t) accumulates y0, since by
continuity of the flow the solution x(t) must accumulate to every point in the positive semi-orbit of the
flow emanating from y0.
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(b) The orbit x(t) may accumulate to a closed loop consisting of an equilibrium point and a so-called
homoclinic orbit that converges to this equilibrium as t → ±∞.

8. In the lecture we defined ω(x) as the set of accumulation points of the positive semi-orbit of the flow Φt

emanating from x, i.e. for all y ∈ ω(x) there exists a monotone increasing sequence tk with k ∈ N so that
limk→∞ tk = ∞ and limk→∞ Φtk(x) = y. For notational convenience, let use refer to the ω-limit set defined
in this way as ω(x) and let the set defined in the question be defined as ω′(x). The aim is to show that
ω(x) = ω′(x).

ω(x) ⊂ ω′(x): suppose limk→∞ Φtk(x) = y then clearly y ∈ {Φt(x) | t > T} for all T ∈ R+ and thus also
y ∈ ω′(x).

ω′(x) ⊂ ω(x): if y ∈ ω′(x) we have that y ∈ {Φt(x) | t > T} for all T ∈ R+. In turn this means that there
must be an increasing sequence tk such that Φtk(x) → y since if not then there would be a T sufficiently
large so that y 6∈ {Φt(x) | t > T}.

9. • We saw in Question 5 of Sheet 5 that r = 1 is a globally attracting circle (with basin of attraction
R2 \ {0}), so the ω-limits sets must be contained in this circle or the origin r = 0. As the circle is a
periodic solution, the entire circle r = 1 is the only ω-limit set of the system. This is circle is also the
α-limit set of all points on the circle r = 1. The origin r = 0 is an equilibrium and its own α- and
ω-limit set.

• Again here the flow in the angular direction is constant. In the radial direction the flow has ”equilibria”
at r = 0, 1, 2. The derivative of the radial vector field at these points is 2,−1, 2 respectively, so the
origin r = 0 is an unstable equilibrium, the circle r = 1 an asymptotically stable periodic solution and
the circle r = 2 an asymptotically unstable periodic solution. The equilibria and periodic solutions are
always their own α- and ω-limit sets. The periodic solution r = 1 also functions as the ω-limit set of
the region 0 < r < 2 (its basin of attraction).

• flow in angular direction is again constant. Invariant circles (periodic solutions) arise at r = 0 mod π.
Derivatives in radial direction are cos(r), i.e. r = 0 is unstable equilbrium, r = 1 stable per soln, r = 2
unstable per soln etc. This equilibrium and periodic solutions form the set of all α- and ω-limit sets of
this flow.

• Equilbria are the points (x, y) = (0 mod π, π/2 mod π) and (x, y) = (π/2 mod π, 0 mod π). It turns
out that these equilbria are the only ω- and α limit sets of this vector field.

(Note: This is an example of a special type of vector field, called a gradient vector field. Let F (x, y) :=
cos x sin y, then

d

dt

(

x
y

)

= −∇F (x, y) = −
(

∂F (x,y)
∂x

∂F (x,y)
∂y

)

.

It turns out that gradient vector fields f(x) = −∇F (x) have natural Lyapunov functions, namely the
function F :

d

dt
F (x) = ∇F (x) · d

dt
x = −(∇F (x)) · (∇F (x)) = −|∇F (x)|2 ≤ 0.

As a consequence, we have that x ∈ ω(y) implies that d
dtF (x) = 0 which in turn implies that ∇F (x) = 0

which implies that f(x) = 0 so that x must be an equilibrium point.)

10. (a) ẋ = y, ẏ = −κx − x3 − µy.

(b) (i) dE
dt = yẏ + y(κx + x3) = −µy2 ≤ 0

(ii) Sketches of the phase portraits at (κ, µ) = (1, 0) and (κ, µ) = (−1, 0.5). [Anything with main
features in common will do.]
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If κ > 0 and µ = 0 the set of α- and ω-limit sets consist of the entire R2 since all solutions are
periodic or equilibria. If κ < 0 and µ > 0 the α- and ω- limit sets are the three equilibria.

(c) (i) Equilibria are determined by κx + x3 = 0 ⇔ x = 0 or x = ±
√
−κ.

k
K1.0 K0.5 0 0.5 1.0

x

K1.0

K0.5

0.5

1.0

(ii) With the added term, we find the equilbria by solving κx + x3 − εx7 = 0, giving x = 0 or
0 = κ + x2 − εx6 =: h(x2, ε). Write y = x2. Then we have h(−κ, 0) = 0 and the partial derivative
with respect to the first argument ∂1h(−κ, 0) 6= 0. Then by the Implicit Function Theorem we
have a unique y(κ, ε) with y(κ, 0) = −κ such that h(y(ε), ε) = 0. As y(ε) depends continuously
(and smoothly) on ε the qualitative shape of the bifurcation diagram will be preserved.

(d) With f(x, y) = (f1(x, y), f2(x, y)), the nullclines are defined as the sets (curves) f1(x, y) = 0 and
f2(x, y) = 0.

The Jacobian Df(x, y) has row vectors (
∂fj(x,y)

∂x ,
∂fj(x,y)

∂y ) j = 1, 2. Invertibility of Df(x, y) means that
these row vectors are linearly independent.

The nulclines intersect transversely in (x0, y0) if f1(x0, y0) = f2(x0, y0) = 0 and the tangent vectors to
these curves in (x0, y0) are linearly independent. These tangent vectors are orthogonal to the normals
∇f1(x0, y0) and ∇f1(x0, y0). The tangent vectors are linearly independent if and only if the vectors
normal to them are linearly independent. We now note that the gradient vectors representing the
normals are precisely (the transpose of) the row vectors that arise in the Jacobian above. Hence
invertibility of Df(x0, y0) is equivalent to transverse intersections of nullclines.

By the implicit function theorem, we now that an equilibrium (x0, y0) is persistent (under small per-
turbations) if Df(x0, y0) is invertible. We also know that transverse intersections are persistent. So
the above result is consistent with these results on persistence.
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