
M2AA1 Differential Equations

Exercise sheet 6

1. Use Lyapunov-Schmidt reduction to find an expression (or approximation) of the set of equilibria (as a
function of external parameter λ ∈ R) of the planar vector field f(x, y, λ) = (λ+2x+y−x2, 2x+(1+λ)y−xy)
near the equilibrium (x, y) = (0, 0) at λ = 0, where (x, y) ∈ R2.

2. Let f : Rm → Rm and Df(0) denote its derivative at 0. Consider the following decompositions of Rm:

Rm = kerDf(0) ⊕ C, Rm = rangeDf(0) ⊕ C̃,

where (thus) C and C̃ are complementary to kerDf(0) and rangeDf(0), respectively, in Rm.

(a) Show that by choosing appropriate projections (to rangeDf(0) and C̃, respectively) f can be written
as the system

f1 : kerDf(0) × C → rangeDf(0), f2 : kerDf(0) × C → C̃.

(b) Show that D2f1(0, 0) is invertible, and that D1f2(0, 0) = 0. (As usual the notation Dj means ”derivative
with respect to the jth argument”.)

3. Find a Lyapunov function for the linear ODE ẋ = −x, with x ∈ Rm.

4. (a) Consider the one-dimensional harmonic oscillator ẍ = −ω2x with ω > 0. Show that the total energy of
this oscillator (recall your mechanics!) is a Lyapunov function for the equilibrium point x = ẋ = 0, so
that the latter is Lyapunov stable.

(b) Consider the slight modifcation ẍ = −ω2x − εẋ, where ε > 0. Find a Lyapunov function to prove that
the equilibrium x = ẋ = 0 is asymptotically stable and that its basin of attraction consists of the entire
phase space. (We say that this equilibrium is a global attractor.) Give a physical interpretation to the
parameter ε.

(c) Find a Lyapunov function to prove that the equilibrium x = ẋ = 0 is a global attractor of ẍ = −ω2x−εẋ,
were ω, ε > 0 and x ∈ Rm.

5. Consider the ODE
ẋ = 2y(z − 1), ẏ = −x(z − 1), ż = −z.

Note that (x, y, z) = (0, 0, 0) is an equilibrium solution.

(a) Show that this equilibrium is Lyapunov stable by finding a Lyapunov function (Hint: there exists a
Lyapunov function that is a quadratic polynomial).

(b) Is this equilibrium also asymptotically stable? Why (not)?

6. Suppose that V is a smooth function defined in a neighbourhood U of an equilibrium point x0 of the ODE
ẋ = f(x), such that V (x0) = 0, V (x) > 0 for all x ∈ U \ {x0}, and d

dt
V (x(t)) > 0, where x(t) ∈ U \ {x0}

and x(t) satisfies the ODE. Prove that as a consequence, x0 is not Lyapunov stable.

7. Consider a solution x(t) with initial condition x0 = x(0) of an the ODE ẋ = f(x), with x ∈ Rm and
Lyapunov function V , i.e. d

dt
V (x(t)) ≤ 0. Suppose that x(t) accumulates to a point y0.

(a) Show that the solution y(t) with y(0) = y0 satisfies d
dt

V (y(t)) = 0 for all t ≥ 0.

(b) Show that the orbit Y := {y(t) | t ∈ R} is contained in the ω-limit set of x0, i.e. Y ⊂ ω(x0), but that
the orbit x(t) does not necessary converge to Y as t → ∞. (In the sense that limt→∞ infy∈Y |x(t) − y|
does not necessarily converge to 0.) [For instance, sketch an example.]

8. Show that the ω-limit set of a point x ∈ Rm for a flow Φt : Rm → Rm is given by

ω(x) =
⋂

T∈R+

{Φt(x) | t > T}.

(In other words show that this definition is equivalent to the one given in the lecture.)
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9. For each of the following systems, identify all points that lie in either an α- or ω-limit set ((r, θ) denote polar
coordinates)

• ṙ = r − r2, θ̇ = 1

• ṙ = r3 − 3r2 + 2r, θ̇ = 1

• ṙ = sin r, θ̇ = −1

• ẋ = sin x sin y, ẏ = − cos x cos y

10. (from 2008 exam) Consider the equations of motion for a nonlinear oscillator with friction

d2x

dt2
= −κx − x3 − µ

dx

dt
, (0.1)

where x ∈ R, µ is a non-negative parameter (friction constant) and κ is a constant that can be both positive
and negative (elasticity constant).

(a) Write the equation (0.1) as a first order ODE on the plane R2.

(b) (i) Show that the energy of this oscillator

E =
1

2

(

dx

dt

)2

+
κ

2
x2 +

1

4
x4

is a Lyapunov function of (0.1).

(ii) Sketch the phase portrait and describe all ω- and α limit sets of this system in the case that:

∗ κ = 1 and µ = 0.

∗ κ = −1 and µ > 0.

You may use the following sketches of the contours (E =constant) of the Lyapunov function E
when κ = 1 and κ = −1:
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(c) (i) Analyze the bifurcation of equilibria in the system (0.1) as κ increases through κ = 0. Sketch the
bifurcation diagram (bifurcation parameter κ versus x).

(ii) Discuss whether (and if, how) the bifurcation diagram in (ii) changes if one adds a term εx7 (with
|ε| being very small) to the right-hand-side of (0.1).

(d) Equilibria can be viewed as the intersection of nullclines of the planar vector field derived in (a). Recall
that the nullclines are defined as curves on which one of the components of the vector field is equal to
zero.

Show for general planar vector fields f : R2 → R2, that the derivative of the vector field Df(x0) at an
equilibrium x0 is invertible if and only if the nullclines have a transverse intersection at x0.

Discuss this relationship in the context of conditions for persistence of equilibria under small perturba-
tions.
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