M2AA1 Differential Equations Exercise sheet 5 answers

- 1. (a) If $|B| \leq \delta$ then all the matrix elements b_{ij} of B satisfy $|b_{ij}| \leq \delta$. (This can be verified from the fact that if $b := \max b_{ij}$ then there exists a vector **x** with $|\mathbf{x}| = 1$ so that $|B\mathbf{x}| \ge b$.) Now the eigenvalues λ of A + B are determined as the roots of the equation $f(\lambda) := \det(A + B - \lambda I) = 0$. $f : \mathbb{C} \to \mathbb{C}$ is polynomial and the roots $f^{-1}(0)$ depend continuously on the elements of A+B. But if $|B| \leq \delta$ then by the above argument we also have $|(A + B)_{ij} - a_{ij}| = |b_{ij}| \le \delta$. Hence, by continuity of the eigenvalues as a function of the matrix elements, if A is hyperbolic (and thus all eigenvalues μ of A satisfy the condition that $|\operatorname{Re}(\mu)| \geq \varepsilon$ then there exists a $\delta > 0$ such that for all B with $|B| \leq \delta$ each eigenvalue λ_i of A + B lies in an open ball of radius $\varepsilon/2$ around an eigenvalue μ_i of A such that in the limit of $|B| \to 0$ we have $\lambda_i \to \mu_i$.
 - (b) We noticed in (a) already that $|B| < \delta$ implies that $|b_{ij}| < \delta$. On the other hand, if $|b_{ij}| < \delta/m$ for all $i, j = 1, \ldots, m$ it follows that $|B| < \delta$. An (open) ε -ball around A is defined as all A + Bwith $d(A+B,A) < \varepsilon$, i.e. $\sqrt{\sum_{i,j=1}^{m} b_{ij}^2} < \varepsilon$. I thus follows that the set $\{A+B \mid |B| < \delta\} \supset$ $\{A + B \mid d(A + B, A) < \delta/m\}$ and thus that it is a neighbourhood of A.
- 2. equilibria, Jacobian J
 - $(x,y) = (0 \mod \pi, \frac{\pi}{2} \mod \pi), J = \begin{pmatrix} \cos(x) & 0 \\ 0 & -\sin(y) \end{pmatrix}$. In equilibria J has eigenvalues ± 1 , ie hyperbolic.
 - (x, y) = (0, 0); J at this point is 0 matrix, is not hyperbolic

 - (x, y) = (0, 0) and J = 0 in equilbrium: non-hyperbolic.

In the non-hyperbolic cases one finds that the local flow is not well-predicted by the linear approximation (in doubt you can check your phase portraits with maple/matlab etc).

3. Try
$$u = x + ay^2$$
 and $v = z + by^2$ then we have $\dot{u} = u$ and $\dot{v} = -v$ provided that $a = 1/3$ and $b = 1$

$$\dot{u} = \dot{x} + \frac{2}{3}\dot{y}y = x + y^2 - \frac{2}{3}y^2 = u, \quad \dot{v} = \dot{z} + 2\dot{y}y = -z + y^2 - 2y^2 = -v.$$

Hence $(\dot{u}, \dot{y}, \dot{v}) = (u, -y, -z).$

- 4. Equilibria satisfy $y = -x^2$ and y = x + a, hence $x^2 + x + a = 0 \Leftrightarrow x = \frac{1}{2}(-1 \pm \sqrt{1-4a})$. Jacobian $J(x,y) = \begin{pmatrix} 2x & 1\\ 1 & -1 \end{pmatrix}$. The eigenvalues of J are $\lambda_{\pm} = -1 + \frac{\varepsilon}{2}\sqrt{1-4a} \pm \frac{1}{2}\sqrt{5-4a}$ for $x_{\varepsilon} = \frac{1}{2}(-1+\varepsilon\sqrt{1-4a})$ and $\varepsilon = \pm 1$. At $a = \frac{1}{4}$ we have a fold bifurcation of equilibria (none exist when $a > \frac{1}{4}$ and two when $a = \frac{1}{4}$). Correspondingly, eigenvalues of the Jacobian at $a = \frac{1}{4}$ are $\lambda_{\pm} = -1 \pm 1 = \{0, -2\}$, when $a < \frac{1}{4}$ then x_1 is hyperbolic of saddle type and x_{-1} is a hyperbolic (asymptotically stable) attractor.
- 5. In the radial direction, when r = 1 we have $\dot{r} = 0$. Moreover the derivative of the vector field $\dot{r} = f(r) = r r^2$ in the radial direction is equal to $\frac{df(r)}{dr} = 1 - 2r$, which is negative (equal to -1) if r = 1. Hence the circle r = 1 is globally attracting (note that f(r) < 0 if r > 1 and f(r) > 0 if r < 1. We also have an equilbrium r = 0 that is asymptotically unstable $\frac{df}{dr}(0) = 1$.

The vector field for the θ -component give insight about the flow on the invariant circle r = 1. Note that $0 \leq \sin^2(\theta/2) \leq 1$. Hence we have 2 equilibria when 0 < a < 1, one equilibrium when a = 0 or a = 1and no equilbria if a < 0 or a > 1 (in which case the invariant circle constitutes a periodic solution). The bifurcations at a = 0 and a = 1 are fold bifurcations. At a = 0 we have one equilibrium $\theta = 0$ that splits into one stable ($\theta < 0$) and one unstable ($\theta > 0$) equilbrium $\theta = 2 \arcsin(\pm \sqrt{a})$ that move apart until the reunit at the other side of the circle $\theta = \pi$ when a = 1. There these equilibria recombine and disappear.