M2AA1 Differential Equations

Exercise sheet 5 answers

1. (a) If $|B| \leq \delta$ then all the matrix elements $b_{i j}$ of B satisfy $\left|b_{i j}\right| \leq \delta$. (This can be verified from the fact that if $b:=\max b_{i j}$ then there exists a vector \mathbf{x} with $|\mathbf{x}|=1$ so that $|B \mathbf{x}| \geq b$.) Now the eigenvalues λ of $A+B$ are determined as the roots of the equation $f(\lambda):=\operatorname{det}(A+B-\lambda I)=0 . f: \mathbb{C} \rightarrow \mathbb{C}$ is polynomial and the roots $f^{-1}(0)$ depend continuously on the elements of $A+B$. But if $|B| \leq \delta$ then by the above argument we also have $\left|(A+B)_{i j}-a_{i j}\right|=\left|b_{i j}\right| \leq \delta$. Hence, by continuity of the eigenvalues as a function of the matrix elements, if A is hyperbolic (and thus all eigenvalues μ of A satisfy the condition that $|\operatorname{Re}(\mu)| \geq \varepsilon)$ then there exists a $\delta>0$ such that for all B with $|B| \leq \delta$ each eigenvalue λ_{i} of $A+B$ lies in an open ball of radius $\varepsilon / 2$ around an eigenvalue μ_{i} of A such that in the limit of $|B| \rightarrow 0$ we have $\lambda_{i} \rightarrow \mu_{i}$.
(b) We noticed in (a) already that $|B|<\delta$ implies that $\left|b_{i j}\right|<\delta$. On the other hand, if $\left|b_{i j}\right|<\delta / m$ for all $i, j=1, \ldots, m$ it follows that $|B|<\delta$. An (open) ε-ball around A is defined as all $A+B$ with $d(A+B, A)<\varepsilon$, i.e. $\sqrt{\sum_{i, j=1}^{m} b_{i j}^{2}}<\varepsilon$. I thus follows that the set $\{A+B| | B \mid<\delta\} \supset$ $\{A+B \mid d(A+B, A)<\delta / m\}$ and thus that it is a neighbourhood of A.
2. equilibria, Jacobian J

- $(x, y)=\left(0 \bmod \pi, \frac{\pi}{2} \bmod \pi\right), J=\left(\begin{array}{cc}\cos (x) & 0 \\ 0 & -\sin (y)\end{array}\right)$. In equilibria J has eigenvalues ± 1, ie hyperbolic.
- $(x, y)=(0,0) ; J$ at this point is 0 matrix, ie not hyperbolic
- $(x, y)=(0,0) ; J=\left(\begin{array}{cc}1 & 2 y \\ 0 & 2\end{array}\right)$ has evals 1,2 so hyperbolic asymptotically unstable equilibrium.
- $(x, y)=(0,0) ; J=\left(\begin{array}{cc}0 & 2 y \\ 1 & 0\end{array}\right)$ is non-hyperbolic in equilbrium.
- $(x, y)=(0,0)$ and $J=0$ in equilbrium: non-hyperbolic.

In the non-hyperbolic cases one finds that the local flow is not well-predicted by the linear approximation (in doubt you can check your phase portraits with maple/matlab etc).
3. Try $u=x+a y^{2}$ and $v=z+b y^{2}$ then we have $\dot{u}=u$ and $\dot{v}=-v$ provided that $a=1 / 3$ and $b=1$.

$$
\dot{u}=\dot{x}+\frac{2}{3} \dot{y} y=x+y^{2}-\frac{2}{3} y^{2}=u, \quad \dot{v}=\dot{z}+2 \dot{y} y=-z+y^{2}-2 y^{2}=-v .
$$

Hence $(\dot{u}, \dot{y}, \dot{v})=(u,-y,-z)$.
4. Equilibria satisfy $y=-x^{2}$ and $y=x+a$, hence $x^{2}+x+a=0 \Leftrightarrow x=\frac{1}{2}(-1 \pm \sqrt{1-4 a})$. Jacobian $J(x, y)=\left(\begin{array}{cc}2 x & 1 \\ 1 & -1\end{array}\right)$. The eigenvalues of J are $\lambda_{ \pm}=-1+\frac{\varepsilon}{2} \sqrt{1-4 a} \pm \frac{1}{2} \sqrt{5-4 a}$ for $x_{\varepsilon}=\frac{1}{2}(-1+\varepsilon \sqrt{1-4 a})$ and $\varepsilon= \pm 1$. At $a=\frac{1}{4}$ we have a fold bifurcation of equilibria (none exist when $a>\frac{1}{4}$ and two when $a=\frac{1}{4}$). Correspondingly, eigenvalues of the Jacobian at $a=\frac{1}{4}$ are $\lambda_{ \pm}=-1 \pm 1=\{0,-2\}$, when $a<\frac{1}{4}$ then x_{1} is hyperbolic of saddle type and x_{-1} is a hyperbolic (asymptotically stable) attractor.
5. In the radial direction, when $r=1$ we have $\dot{r}=0$. Moreover the derivative of the vector field $\dot{r}=f(r)=r-r^{2}$ in the radial direction is equal to $\frac{d f(r)}{d r}=1-2 r$, which is negative (equal to -1) if $r=1$. Hence the circle $r=1$ is globally attracting (note that $f(r)<0$ if $r>1$ and $f(r)>0$ if $r<1$. We also have an equilbrium $r=0$ that is asymptotically unstable $\frac{d f}{d r}(0)=1$.
The vector field for the θ-component give insight about the flow on the invariant circle $r=1$. Note that $0 \leq \sin ^{2}(\theta / 2) \leq 1$. Hence we have 2 equilibria when $0<a<1$, one equilibrium when $a=0$ or $a=1$ and no equilbria if $a<0$ or $a>1$ (in which case the invariant circle constitutes a periodic solution). The bifurcations at $a=0$ and $a=1$ are fold bifurcations. At $a=0$ we have one equilibrium $\theta=0$ that splits into one stable $(\theta<0)$ and one unstable $(\theta>0)$ equilbrium $\theta=2 \arcsin (\pm \sqrt{a})$ that move apart until the reunit at the other side of the circle $\theta=\pi$ when $a=1$. There these equilibria recombine and disappear.

