
M2AA1 Differential Equations
Exercise sheet 5 answers

1. (a) If |B| ≤ δ then all the matrix elements bij of B satisfy |bij | ≤ δ. (This can be verified from the fact
that if b := max bij then there exists a vector x with |x| = 1 so that |Bx| ≥ b.) Now the eigenvalues
λ of A + B are determined as the roots of the equation f(λ) := det(A + B − λI) = 0. f : C → C is
polynomial and the roots f−1(0) depend continuously on the elements of A+B. But if |B| ≤ δ then by
the above argument we also have |(A+B)ij − aij | = |bij | ≤ δ. Hence, by continuity of the eigenvalues
as a function of the matrix elements, if A is hyperbolic (and thus all eigenvalues µ of A satisfy the
condition that |Re(µ)| ≥ ε) then there exists a δ > 0 such that for all B with |B| ≤ δ each eigenvalue
λi of A + B lies in an open ball of radius ε/2 around an eigenvalue µi of A such that in the limit of
|B| → 0 we have λi → µi.

(b) We noticed in (a) already that |B| < δ implies that |bij | < δ. On the other hand, if |bij | < δ/m
for all i, j = 1, . . . ,m it follows that |B| < δ. An (open) ε-ball around A is defined as all A + B

with d(A + B,A) < ε, i.e.
√∑m

i,j=1 b
2
ij < ε. I thus follows that the set {A + B | |B| < δ} ⊃

{A+B | d(A+B,A) < δ/m} and thus that it is a neighbourhood of A.

2. equilibria, Jacobian J

• (x, y) = (0 mod π, π2 mod π), J =
(

cos(x) 0
0 − sin(y)

)
. In equilibria J has eigenvalues ±1, ie

hyperbolic.
• (x, y) = (0, 0); J at this point is 0 matrix, ie not hyperbolic

• (x, y) = (0, 0); J =
(

1 2y
0 2

)
has evals 1, 2 so hyperbolic asymptotically unstable equilibrium.

• (x, y) = (0, 0); J =
(

0 2y
1 0

)
is non-hyperbolic in equilbrium.

• (x, y) = (0, 0) and J = 0 in equilbrium: non-hyperbolic.

In the non-hyperbolic cases one finds that the local flow is not well-predicted by the linear approximation
(in doubt you can check your phase portraits with maple/matlab etc).

3. Try u = x+ ay2 and v = z + by2 then we have u̇ = u and v̇ = −v provided that a = 1/3 and b = 1.

u̇ = ẋ+
2
3
ẏy = x+ y2 − 2

3
y2 = u, v̇ = ż + 2ẏy = −z + y2 − 2y2 = −v.

Hence (u̇, ẏ, v̇) = (u,−y,−z).

4. Equilibria satisfy y = −x2 and y = x + a, hence x2 + x + a = 0 ⇔ x = 1
2(−1 ±

√
1− 4a). Jacobian

J(x, y) =
(

2x 1
1 −1

)
. The eigenvalues of J are λ± = −1+ ε

2

√
1− 4a± 1

2

√
5− 4a for xε = 1

2(−1+ε
√

1− 4a)

and ε = ±1. At a = 1
4 we have a fold bifurcation of equilibria (none exist when a > 1

4 and two when a = 1
4).

Correspondingly, eigenvalues of the Jacobian at a = 1
4 are λ± = −1 ± 1 = {0,−2}, when a < 1

4 then x1 is
hyperbolic of saddle type and x−1 is a hyperbolic (asymptotically stable) attractor.

5. In the radial direction, when r = 1 we have ṙ = 0. Moreover the derivative of the vector field ṙ = f(r) = r−r2

in the radial direction is equal to df(r)
dr = 1 − 2r, which is negative (equal to −1) if r = 1. Hence the circle

r = 1 is globally attracting (note that f(r) < 0 if r > 1 and f(r) > 0 if r < 1. We also have an equilbrium
r = 0 that is asymptotically unstable df

dr (0) = 1.

The vector field for the θ-component give insight about the flow on the invariant circle r = 1. Note that
0 ≤ sin2(θ/2) ≤ 1. Hence we have 2 equilibria when 0 < a < 1, one equilibrium when a = 0 or a = 1
and no equilbria if a < 0 or a > 1 (in which case the invariant circle constitutes a periodic solution). The
bifurcations at a = 0 and a = 1 are fold bifurcations. At a = 0 we have one equilibrium θ = 0 that splits
into one stable (θ < 0) and one unstable (θ > 0) equilbrium θ = 2 arcsin(±

√
a) that move apart until the

reunit at the other side of the circle θ = π when a = 1. There these equilibria recombine and disappear.

14


