M2AA1 Differential Equations
Exercise sheet 5 answers

1.

(a)

If |B| < 0 then all the matrix elements b;; of B satisfy |b;;| < 0. (This can be verified from the fact
that if b := maxb;; then there exists a vector x with |x| = 1 so that |Bx| > b.) Now the eigenvalues
A of A+ B are determined as the roots of the equation f(\) :=det(A+B —X)=0. f:C — Cis
polynomial and the roots f~1(0) depend continuously on the elements of A+ B. But if |B| < § then by
the above argument we also have |(A 4+ B);; — a;j| = |b;j| < 6. Hence, by continuity of the eigenvalues
as a function of the matrix elements, if A is hyperbolic (and thus all eigenvalues p of A satisfy the
condition that |Re(u)| > ¢) then there exists a § > 0 such that for all B with |B| < § each eigenvalue
i of A+ B lies in an open ball of radius £/2 around an eigenvalue p; of A such that in the limit of
|B| — 0 we have \; — p;.

We noticed in (a) already that |B| < ¢ implies that |b;;| < §. On the other hand, if |b;;| < d/m
for all 4,j = 1,...,m it follows that |B| < 4. An (open) e-ball around A is defined as all A + B

with d(A + B,A) < ¢, ie. /> _ b2 < e. 1 thus follows that the set {A + B | |B] < §} D

i,5=1"1j
{A+ B | d(A+ B,A) < §/m} and thus that it is a neighbourhood of A.

2. equilibria, Jacobian J

e (z,y) = (0 mod 7,5 mod 7), J = (

cos(x) 0

0 —sin(y) > In equilibria J has eigenvalues +1, ie

hyperbolic.

e (z,y) =(0,0); J at this point is 0 matrix, ie not hyperbolic

1 2y

e (z,y)=(0,0); J = < 0 9 > has evals 1,2 so hyperbolic asymptotically unstable equilibrium.

0 2y

e (z,y)=(0,0); J = ( 1 0 > is non-hyperbolic in equilbrium.

e (z,y) = (0,0) and J = 0 in equilbrium: non-hyperbolic.

In the non-hyperbolic cases one finds that the local flow is not well-predicted by the linear approximation
(in doubt you can check your phase portraits with maple/matlab etc).

3. Try u =z + ay? and v = z + by? then we have @ = u and ¥ = —v provided that a = 1/3 and b = 1.
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. g _ 2_22_ Y ) — 2 _ —
U=+ -yy=c+Yy Yy =u, v=24+2yy=—z2+y 2y° = —v.

3 3
Hence (U, Z./, U) = (u” -y, —Z).

4. Equilibria satlsfy = 22andy =2z+a, hence 22 +24+a =0z = %(—1 + 1 —4a). Jacobian
J(z,y) = ( 2z ) The eigenvalues of J are A+ = —14+5v/1 — 4ail\/5 — 4a for z. = L(—14ev/1—4a)
and e = +1. Ata = 4 we have a fold bifurcation of equilibria (none exist when a > 3 L and two when a = %)
Correspondingly, eigenvalues of the Jacobian at a = % are Ay = —1+1 = {0,—2}, when a < 1 then x; is

5. In the radial direction, when r = 1 we have 7 = 0. Moreover the derivative of the vector field 7 = f(r) = r—r

in the radial direction is equal to
r = 1 is globally attracting (note that f(r) <0if r > 1 and f(r) > 0if r < 1. We also have an equilbrium
r = 0 that is asymptotically unstable g—J;(O) =1.

hyperbolic of saddle type and x_; is a hyperbolic (asymptotically stable) attractor.
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df—(r) = 1 — 2r, which is negative (equal to —1) if » = 1. Hence the circle

The vector field for the #-component give insight about the flow on the invariant circle » = 1. Note that
0 < sin?(f/2) < 1. Hence we have 2 equilibria when 0 < a < 1, one equilibrium when a = 0 or a = 1
and no equilbria if @ < 0 or @ > 1 (in which case the invariant circle constitutes a periodic solution). The
bifurcations at a = 0 and a = 1 are fold bifurcations. At a = 0 we have one equilibrium 6 = 0 that splits
into one stable (# < 0) and one unstable (6 > 0) equilbrium 6 = 2arcsin(++/a) that move apart until the
reunit at the other side of the circle # = m when a = 1. There these equilibria recombine and disappear.
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