M2AA1 Differential Equations

Exercise sheet 4 answers
(from Chap 17, Hirsch, Smale and Devaney pp 404-405)

1. (a) exact solution $x(t)=2-e^{t}$. Picard iterates: $u_{0}(t)=1, u_{1}(t)=1-t, u_{2}(t)=1-t-\frac{1}{2} t^{2}$ etc. Corresponds to Taylor expansion of exact soln.
(b) exact solution $x(t)=0$. Picard iterates: $u_{0}(t)=0, u_{1}(t)=0, u_{2}(0)=0$ etc.
(c) exact solution $x(t)=\left(\frac{-3}{t-3}\right)^{3}$. Picard iterates: $u_{0}(t)=1, u_{1}(t)=1+t, u_{2}(t)=\frac{4}{7}+\frac{3}{7}(1+t)^{7 / 3}=$ $1+t+\frac{2}{3} t^{2}+o\left(t^{2}\right)$ etc. Develops same Taylor series expansion.
(d) exact $t=\ln (\sec (x)+\tan (x)$) (for those of you who are good at doing these special integrals; do not worry if this is not something you see quickly). Picard iterates: $u_{0}(t)=0, u_{1}(t)=t, u_{2}(t)=\sin (t)$, etc
(e) exact $x(T)=\exp (t / 2-1 / 2)$. Picard iterates: $u_{0}(t)=1, u_{1}(t)=1 / 2+t / 2, u_{2}(t)=5 / 8+t / 4+t^{2} / 8$ etc
2. by induction: we have $u_{0}=x_{0}$; if $u_{n}(t)=\sum_{k=0}^{n} \frac{t^{k} A^{k}}{k!} x_{0}$ then

$$
u_{n+1}(t)=x_{0}+\int_{0}^{t} A u_{n}(s) d s=x_{0}+\sum_{k=0}^{n} \frac{t^{n+1} A^{n+1}}{(n+1)!} x_{0}=\sum_{k=0}^{n+1} \frac{t^{k} A^{k}}{k!} x_{0}
$$

3. $\dot{x}=y, \dot{y}=-x$ with $(x, y)=\mathrm{x}$ we have $\dot{\mathrm{x}}=A \mathrm{x}$ where $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. We note that $A^{2}=-I$ hence

$$
\exp (A t)=\sum_{k=0}^{\infty}\left(\frac{A^{2 k} t^{2 k}}{(2 k)!}+\frac{A^{2 k+1} t^{2 k+1}}{(2 k+1)!}\right)=\sum_{k=0}^{\infty}\left((-1)^{k} \frac{t^{2 k}}{(2 k)!} I+\frac{(-1)^{k} t^{2 k+1}}{(2 k+1)!} A\right)
$$

and

$$
\binom{\cos (t)}{-\sin (t)}=\exp (A t)\binom{1}{0}=\binom{\sum_{k=0}^{\infty}(-1)^{k} \frac{t^{2 k}}{(2 k)!}}{\sum_{k=0}^{\infty}-\frac{(-1)^{k} t^{2 k+1}}{(2 k+1)!}}
$$

4. Lipschitz constants K : (a) $K=1$ (triangle inequality); (b) not Lipschitz because derivative is unbounded; (c) $K=1$ (bounded derivative); (d) $K=1$ (derivative bounded by largest eigenvalue); (e) Lipschitz since bounded derivative (gradient).
5. $x(t)=0$ and $x(t)=(2 t / 3)^{3 / 2}$.
6. $x(t)=t+1 t<0$ and $x(t)=2 t+1$ for $t \geq 0$ (not differentiable). if $f^{\prime}(x)=0, x>1$ the solution for $t<0$ remains identical and $x(t)=1$ for $t \geq 0$.
7. solution $x(t)=a \cos (t)+b \sin (t)$, then $x(0)=0$ implies $a=0$ but then also $x(\pi)=0$.
8. solution $x(t)=a \cos (t \sqrt{k})+b \sin (t \sqrt{k})$, then $x(0)=0$ implies $a=0$ and $x(\pi)=b \sin (\pi \sqrt{k})=1$ can be solved as long as $\sqrt{k} \notin \mathbb{Z}$.
9. Let $U(t)=C+\int_{0}^{t} u(s) v(s) d s$ with $C>0$, then $u(t) \leq U(t)$. Since $U^{\prime}(t)=u(t) v(t)$ we have $U^{\prime}(t) / U(t) \leq v(t)$ from which we obtain $\frac{d}{d t} \ln U(t) \leq v(t)$ and hence $u(t) \leq U(t) \leq \exp \left(\int_{0}^{t} v(s) d s\right)$. Since true for all $C>0$ by continuity also true for $C=0$.
