M2AA1 Differential Equations Exercise sheet 4 answers

(from Chap 17, Hirsch, Smale and Devaney pp 404-405)

- 1. (a) exact solution $x(t) = 2 e^t$. Picard iterates: $u_0(t) = 1$, $u_1(t) = 1 t$, $u_2(t) = 1 t \frac{1}{2}t^2$ etc. Corresponds to Taylor expansion of exact soln.
 - (b) exact solution x(t) = 0. Picard iterates: $u_0(t) = 0$, $u_1(t) = 0$, $u_2(0) = 0$ etc.
 - (c) exact solution $x(t) = (\frac{-3}{t-3})^3$. Picard iterates: $u_0(t) = 1$, $u_1(t) = 1 + t$, $u_2(t) = \frac{4}{7} + \frac{3}{7}(1+t)^{7/3} = 1 + t + \frac{2}{3}t^2 + o(t^2)$ etc. Develops same Taylor series expansion.
 - (d) exact $t = \ln(\sec(x) + \tan(x))$ (for those of you who are good at doing these special integrals; do not worry if this is not something you see quickly). Picard iterates: $u_0(t) = 0$, $u_1(t) = t$, $u_2(t) = \sin(t)$, etc
 - (e) exact $x(T) = \exp(t/2 1/2)$. Picard iterates: $u_0(t) = 1$, $u_1(t) = 1/2 + t/2$, $u_2(t) = 5/8 + t/4 + t^2/8$ etc
- 2. by induction: we have $u_0 = x_0$; if $u_n(t) = \sum_{k=0}^n \frac{t^k A^k}{k!} x_0$ then

$$u_{n+1}(t) = x_0 + \int_0^t Au_n(s)ds = x_0 + \sum_{k=0}^n \frac{t^{n+1}A^{n+1}}{(n+1)!}x_0 = \sum_{k=0}^{n+1} \frac{t^k A^k}{k!}x_0$$

3. $\dot{x} = y, \dot{y} = -x$ with $(x, y) = \mathbf{x}$ we have $\dot{\mathbf{x}} = A\mathbf{x}$ where $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. We note that $A^2 = -I$ hence

$$\exp(At) = \sum_{k=0}^{\infty} \left(\frac{A^{2k}t^{2k}}{(2k)!} + \frac{A^{2k+1}t^{2k+1}}{(2k+1)!}\right) = \sum_{k=0}^{\infty} \left((-1)^k \frac{t^{2k}}{(2k)!}I + \frac{(-1)^k t^{2k+1}}{(2k+1)!}A\right)$$

and

$$\begin{pmatrix} \cos(t) \\ -\sin(t) \end{pmatrix} = \exp(At) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \sum_{k=0}^{\infty} (-1)^k \frac{t^{2k}}{(2k)!} \\ \sum_{k=0}^{\infty} -\frac{(-1)^k t^{2k+1}}{(2k+1)!} \end{pmatrix}.$$

- 4. Lipschitz constants K: (a) K = 1 (triangle inequality); (b) not Lipschitz because derivative is unbounded; (c) K = 1 (bounded derivative); (d) K = 1 (derivative bounded by largest eigenvalue); (e) Lipschitz since bounded derivative (gradient).
- 5. x(t) = 0 and $x(t) = (2t/3)^{3/2}$.
- 7. x(t) = t + 1 t < 0 and x(t) = 2t + 1 for $t \ge 0$ (not differentiable). if f'(x) = 0, x > 1 the solution for t < 0 remains identical and x(t) = 1 for $t \ge 0$.
- 10. solution $x(t) = a\cos(t) + b\sin(t)$, then x(0) = 0 implies a = 0 but then also $x(\pi) = 0$.
- 11. solution $x(t) = a\cos(t\sqrt{k}) + b\sin(t\sqrt{k})$, then x(0) = 0 implies a = 0 and $x(\pi) = b\sin(\pi\sqrt{k}) = 1$ can be solved as long as $\sqrt{k} \notin \mathbb{Z}$.
- 12. Let $U(t) = C + \int_0^t u(s)v(s)ds$ with C > 0, then $u(t) \le U(t)$. Since U'(t) = u(t)v(t) we have $U'(t)/U(t) \le v(t)$ from which we obtain $\frac{d}{dt} \ln U(t) \le v(t)$ and hence $u(t) \le U(t) \le \exp(\int_0^t v(s)ds)$. Since true for all C > 0 by continuity also true for C = 0.