M2AA1 Differential Equations
Exercise sheet 3 answers

1. We have, d(x,y) = d(y,x), d(x,y) = 0 if and only if x = y and the triangle inequality d(x,y) + d(y,z) >
d(x,z). From the latter it follows that d(y,z) = (d(z,y) + d(y,z)) > 3d(z,z) = 0 for all y, z.

2. A metric space is complete if every Cauchy sequence in it converges. For the mentioned examples, we use
the (natural) distance function d(z,y) = |x — y|.

e QQ: is not a complete metric space, since Cauchy sequences in Q need not converge to have a limit
in Q. For example the Fibonacci sequence {ay,}nen with ap = 1 and a,, = 1/(1 + a,—1) converges to
(V5-1)/2¢Q.

e R: the real line is in fact defined as the completion of QQ, i.e. R is the smallest complete metric space
containing Q.

e Z: the tail of every Cauchy sequence in Z must be constant, with integer value. Hence, the limit of any
such sequence is in Z so (Z, d) is a complete metric space.

e [0,1]: If for a Cauchy sequence in R every element lies inside [0, 1] then so lies the limit point, so [0, 1]
is a complete metric space.

e [0,1): If the interval is half open, we can have a Cauchy sequence in [0,1) that converges to 1. For
instance, the sequence {ay}nen with a, = 1 — 1/n is a Cauchy sequence in [0, 1) but it does converge
to 1 which lies outside [0,1). Hence [0,1) is not a complete metric space.

3. First we note that from the condition it immediately follows that if there is a fixed point of F' then it must
be unique. Namely, if 2 # y, then if  and y would be fixed points of F' it follows that d(z,y) < d(z,y)
which is a contradiction.

Define z,, = F"(x) and let a,, = d(xp+1,%,). Because F is shrinking, a,, is decreasing. Since a,, is bounded
from below (by 0), a,, converges to some ¢ > 0 as n — oo: limy, o d(pt1,2,) = ¢ > 0. By compactness
of X, the sequence {zy}nen has a converging subsequence {x,, }ren (With ng a strictly increasing function
of k). We now consider the sequences {yx}ren and {zj }ren with yy := xy,, and z; := 2, 41. As {zp, tren
is by construction converging to some point z € X, we have limy .o yx = x and limg_,o 2z = F(2)
with d(z, F(z)) = c¢. Then d(F(x), F%(z)) = ¢, as if d(F(x), F%(z)) < ¢ we would have lim,, .o a, < ¢
as well, by continuity of F' and d. But this implies that in case # # F(x) we obtain a contradiction:
c = d(F(x), F*(x)) < d(x, F(z)) = ¢. Hence lim, . a, = d(x, F(z)) = ¢ = 0 so that F(z) = z and the
point of convergence x is a fixed point (and the unique fixed point) of F'. Hence lim,_. F"(z) = z for all
z € X where x is the unique fixed point of F' in X.

An example that satisfies the theorem, but where convergence is not exponential is F' : [0,1] — [0, 1] with
F(z) = o(1—2/2), so that if (z,) # (0,0) d(F(z), F(y)) = [s—ta?—y+1¢?| = |(r—y)(1—(w+1)/2)| < Ja—y|
as 1 — (z +y)/2 < 1. Assume that K were a contraction constant for F'. But taking x = 0, we would have
forall 1 >y > 0: y(1—y/2) = |y — (y?)/2| < Ky. But for y sufficiently close to x = 0 we have 1 —y/2 > K,
contradicting the fact that K is a contraction constant.

4. As in course notes; but also F' o F~1(y) = y implies d%(F o F~Y)(y) =1 and by the chain rule F'(F~!(y)) -
(F1Y(y) = 1 implying (F~1)(y) = 1/F'(x) since F(z) = y.

5. We first establish the remark in the hint. By definition, since x(¢) with initial condition x(0) = y satisfies
x(t) = ®'(y), we have
d

72 = f(@'(y).

We note in this expression that y is a constant initial condition (independent of t). Still, of course, the
expression holds for all possible initial conditions y € R™. Thus we also have

d
7¢t — (pt
dt fO )
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where o denotes composition.

We differentiate both sides with respect to y in the equilibrium point xq:

%D@t(x()) = Df(®"(z0))DP'(x0) = D f(x0)DP'(x0).

From this linear (matrix valued) ODE it follows that

D& (2g) = exp(Df(x0)t),

where we used the fact that ®°(y) = D®%(y) =y for all y.

If all eigenvalues \; of Df(x¢) have negative real part then all eigenvalues of D®!(xq) (with ¢ > 0) have
eigenvalues exp(J;), the modulus of which consquently is bounded from above by a number K < 1. We can
apply the derivative test with C being equal to a sphere with radius p around xg, with p suffuciently close
to zero.

6. See attachment.

7. See atachments.

8.

(a)

If F and G are linear maps, then the surfaces are linear subspace of R™. Let us call the intersection point
of these surfaces (without loss of generality) 0 so that F(0) = G(0) = 0. Let H(z,y) = F(z) — G(y).
It is useful to note that if H is linear we can represent it in matrix form as

H=(F,—-G):R"xR™ - RF, so that H(;{>:(F,—G)(;{>:FX—Gy,

where F'is a kxn matrix and G a kxm matrix. Of course, we have H(0) = 0. The matrix representation

of H (that is equal to DH since H is linear) consists of column vectors 2—5(0) (withi=1,...n) and

g—g(O) (with 4 = n 4+ 1,...n +m). Let us assume that these column vectors span R¥, so that there

are at least k linearly independent column vectors. Let A be the matrix obtained from DH by taking
k column such linearly independent column vectors and write DH = A()\) where A\ = R™+"* are
parameters representing the remaining column vectors. By construction A is invertible so that, by the
Implicit Function Theorem, the zeros of H can be continued uniquely as function of A € R**™~* We
thus have x(\) and we can see this solution set as a graph over A so that locally the dimension of this
solution set is equal to the dimension of A, i.e. n+m — k.

If the functions F' and G are nonlinear, the same argument can be carried through where we observe
that the columns of DH are given by the tangent vectors g—i(O) (with i =1,...n) to the surface given

by F, and tangent vectors g—g(O) (with ¢ = n+1,...n 4+ m) to the surface given by G. One often
refers to the span of these respective sets of tangent vectors as the tangent space at 0. If the sum of
the tangent spaces of the two surfaces in the intersection point is equal to the ambient space R™ we
can carry through the argument used above to obtain the solution set x(\) as a graph over R™+"~% 5o
that the dimension of the intersection set is indeed m +n — k.

If we add additional p parameters, we can include them in X so that A € R™+"~*+P_ By application of
the same argument (noting that the transversality is a property that persists under small perturbations
(in the C! sense, i.e. small deviations in the value of map and it’s derivative)) we obtain a (m-+n—k-+p)-
dimensional solution set near 0 which we can also view as a continuation in p directions of the (m+n—k)-
dimensional solution set obtained in (b) above.

In the particular case of the intersection of two two-dimensional surfaces in R? we thus find that transversality
implies that (locally) the intersection consists of a curve. Transversality implies for the intersection of a
curve and a two-dimensional surface in R? that the intersection is isolated (i.e. there is a small ball around
the intersection point in which no other intersection point lies).

9. See atachments.
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Consider the polar coordinate transformation
A - T2 2 Ther " - — - o
g R — R® where g(r,8) = (r cos@,r sinfl).

By the inverse function theorem, the transformation ¢ is invertible
near a point o = (r, ) if its derivative '(a) is also invertible.

Now
o'(r,f) R* — R®

is defined by

iy do
r - ‘?_TI(Y,B) _01(70) . r
f 72 (r.6) )02 (r.6) f
dar o

where
wi(r, @) = r cos#

wa(r,f) = r sind.

Therefore, since

6(’:":’ a .
L = cosf ﬂ = —rsinf
,fr f

o , dip:

T2 = gin# i = rcosf,
ar ae

we conclude that
g T feos@ —rsinf|  |r
@ (r,0) [9] - [sin() r (:039] [9] '

Because

costl —r sinf
det

9 .9 ,
. = rlcos“ @ +sin“#) = r.
sinf!  r cosf ( ) '

the matrix is invertible for all points a = (r, #) provided r # (.

By the inverse function theorem, therefore, the polar coordinate
transformation ¢ is invertible in a neighbourhood of each of those
points (r.#) € R? for which r # 0.



Consider the spherical coordinate transformation
YR R Y(p,0,6) = p(sin@ cosfl,sin¢ sind, cos d).

By the inverse function theorem, the transformation ¥ is invertible
near a point o = (p, 0, &) if its derivative £'(a) is also invertible.

Now
¥(p,0,0) : R} — R3

is represented by the matrix

-621 021 . , ()Sl
0.¢) ——(p, 0, 9.0,
2 , 2 .
33 T3 .
X (0.0, ) a0 (p. 0. ¢) d¢ (ﬂ f, ¢)

where
1(p,0,0) = psing cost

>
So(p,0,0) = psing sinf
Yalp, B, 0) = peoso.
We conclude that
sing cosfl —psing sinfl pcosg cosf
S p.0,6) = |sing sinfl  psing cos® pcosd sinf
COs O 0 —psin g

Since

sing cosf! —psing sinfl pcosd cosd
det |sin¢ sinfl  psing cos@ pcosé sinf| = —psinog,
COos ¢ 0 —psin @

M p.#,0) is a linear isomorphism for all points o = (p.#, ¢) pro-
vided p # 0 and ¢ # £kw for all k € N.

By the inverse function theorem, therefore, the spherical coordinate
transformation ¥ is invertible in a neighbourhood of each of those
points (p, 0, &) € R® for which p # 0 and ¢ # £k for all k € N,



Exercise 2.

Determine whether the function
f:R? — R?, flz,y) = (cosz, xy)

has a differentiable inverse in a neighbourhood of the point « =
(m,—1).

If so, find the derivative of its inverse function at f(x, —1).

Solution We first let
n:= f(m,—-1) = (cosm,w(-1)) = (-1,—m)
filz,y) == cosz

falw,y) == ay.

By the inverse function theorem, f is invertible in a neighbourhood
of a = (m, —1) if its derivative function f'(w, —1) is onto. Now the
linear map f'(x,y) is represented by the matrix

on oh
ooy — | dr O | =sinz 0
e = |95 S = [ Y.
dr  dy

Therefore, f'(m, —1) is represented by the matrix

fr,—1) = [0 0]..

-1

and is defined as the map

' . B2 2 (o 0 0f |z
fim,—-1): R* — R*, (.L,g)'—}[_l ﬂ_] [y]

Now f'(w,—1) is not onto as the rows of the matrix f'(7w, —1) are
not linearly independent (row rank = 1 # 2 = dim R?). Therefore,
[ does not have a differentiable inverse in a neighbourhood of & =
(m, —1).

Answer No, the function
f:R? — R?, flz,y) = (cosy,zy),

does not have a differentiable inverse in a neighbourhood of the
point o = (7, —1).



Exercise 3.

Determine whether the function
f:R* —R?, flz,y,2) = Bax+y,z-3y,a+2),

has a differentiable inverse in a neighbourhood of the point o =
(21 =3*1 5)

If so, find the derivative of its inverse function at f(2,—3,5).

Solution Guided by the inverse function theorem, we compute

3 1 0
f’(xayaz) = |0 =3 1f = f,(ze —3, :’)
1 0 1

Thus f has a differentiable inverse near (2, —3,5) if and only if
det(f'(2,-3,5)) # 0. We find

3 1 0
detd = det [0 =3 1| = —8#0
1 0 1

and conclude that f has a differentiable inverse near the point
(2,-3,5). Its derivative at

n = f(2,-3.5) = (-1,14,7)

is |
3 1 0] 3 1 -1
8 8
fYm) =0 =31 = |5 2 g
1 0 1 = - B

Thus far the conclusions we can draw by depending solely upon
the inverse function theorem. In this particular case. we can obtain
additional insight by observing that f itself is a linear map whose
matrix is

3 1 0
A= 10 =31
I 0 1

is also its derivative at each point of R*: f'(x,4,2) = A. Now
the linear function f is invertible exactly when det{A) # 0. We
saw above that det{A) = —8. Therefore, we conclude that f is an
isomorphism of vector spaces whose inverse is given by the matrix

=1

AT =

| 0| Laetes

Vxxl | rx,l_| 00 |
s

o 10|03

Answer Yes, the function
f:R* — R3, fle,y,2) = Bax+y,z—3y,x+2),
is linear and is invertible as a whole. Its inverse

=1

3
L]

f—l — 1

1 go| ]
1[_"1““’33[]'—‘

00 D00 | L0

oo

again linear, hence satisfies (f~1)'() = f~! for each n € R?.



Exercise 4,

Determine whether the function
f: R — R3, fleyy,z) = (zy,yz,x2),

has a differntiable inverse in a neighbourhood of the point o =
(1,0, -1).

If so, find the derivative of its inverse function at f(1,0,—1).

Solution We first let
n:= f(1,0,-1) = (0,0,-1)

fl($$ . :,] = Iy

fa(z, y.z) = yz

._f3(:’.:ay, 2‘) = TZ.

By the inverse function theorem. f is invertible in a neighbourhood
of a = (1,0, —1) if its derivative function f'{1,0, —1) is onto. Now
the linear map f'(x, ¥, z) is represented by the matrix

afy df O
dr J dz
) of, ot 0f, y = 0
flz,y,z) = 9w o0 9| = 0z y
of, o of,| Lz 0=
| dx dy 0z _

Therefore,
0 1 0
[(1,0,-1) = [0 -1 0
-1 0 1

As row 1 and 2 are multiples of one another, the row rank of
f1(1,0,—1) = 2 # 3 = dim R®. This implies that f'(1,0,—1) is
not onto, and, hence, f is not invertible in a neighbourhood of the
point (1,0, —1).

Answer The function
[ R — R, flasy. z) = (zy,yz,x2),

does not have a differentiable inverse in a neighbourhood of the
point v = (1,0, —1).



Exercise 5.

Determine whether the function

f:R — R, flz,y,z) = (ze¥, xzyz,In|z

)

has a differentiable inverse in a neighbourhood of the point o =
(2,0.1).

If so, find the derivative of its inverse function at f(2,0,1).

Solution We first let
n= f(2,0,1) = (2,0,0)
fl(wvytz) = xe¥
folz,y.2) = xyz
fs(x,y.z) == In|z|.

3

S

3

By the inverse function theorem, f has a differentiable inverse in a
neighbourhood of a = (2,0, 1) if its derivative function f'(2,0,1) is
onto. Now the linear map f'(xr,y, z) is represented by the matrix

af, ofi dfi]
dr d 0z RV
, of, 0fs 0fs ¢ xet 0
vz = |50 25 2| = (¥ @& =
of; ofy ofs 0 0
| dr dy Oz ]
Therefore,
1 2 0
(2,01 = o 2 0
00 1

As f(2,0,1) is in echelon form, we conclude that f'(2,0,1) is of
full rank and is onto. Hence, f is invertible in a neighbourhood
of the point (2,0,1), and the derivative function of its inverse at
f(2,0,1) 1s

(FI71(2.0,0) = [f(2,0.1)]" =

oo -
St |
- O

Answer The function
[ R — R, flz,y,2) (re¥, xyz,In|z|),

is invertible in a neighbourhood of the point & = (2,0, 1), and the
derivative function of its inverse at f(2,0,1) is

1 -1 0
1

0 10

0 0 1



lynamics as a Tool

a T wy(x)
XeWw.

eto b:= f(a). Let

N

2] m
IA
)

re V produces a
) € V we want to

U is open. Take

> |h| - '%.,

|/ B, we therefore

—_— 0
2|k /a—0

that end assume
f'(g(y) € C* and

9.2 Implicit- and Inverse-Function Theorems 263
Now we adapt this argument to R™

Theorem 9.2.2 (Inverse-Function Theorem) Suppose O C R™isopen, f: O — R™
isdifferentiable, and Df isinvertibleata pointa € O and continuous ata. Then there
exist neighborhoods U C O of aand V of b:= f(a) € R™ such that f is a bijection
fromUtoV [thatis, f isone-to-oneon U and f(U) = V]. Theinverseg: V — Uof f
isdifferentiable with Dg(y) = (Df(g(y)))~'. Furthermore, if f is C" (thatis, all partial
derivatives of f up to orderr exist and are continuous) on U, then so is its inverse.

Proof The proof is actually the same as before. We only need to replace various
numbers by linear maps and some absolute values by norms.

The space. The contraction acts in R,

The map. For any given y € R™, consider the map

@yx) i=x+ Df(@~ (y — f(x))

on O. Notice that ¢, (x) = x if and only if f(x) = y, so we try to find a unique fixed
point for ¢,. We need a set Won whiaﬁt\is a contraction.

The contraction property. Let A := Df(a), @ < |A}||"!/2, and, using continuity
of Df ata, take € > 0 such that || Df (x) — A|| < « for x in the closure of W := B(a, €).
To see that gy is a contraction, note that

| Dgy(x)|| = | 1d—A"'Df )| = |A(A— DF Ol < IA e =2 A < 1/2

for x € Wand apply Corollary 2.2.15 to get ||y (x) — ¢, (x)|| < Allx — x| forx, x" € W.
Therefore, by Proposition 2.2.20 there is a neighborhood V of b such that ¢, is
a contraction of W for all y € V and has a unique fixed point g(y) € W (which
depends continuously on y). U := g(V) = Wn f~1(V) is open.

The determinant of Df(x) depends continuously on Df and hence is continu-
ous at a as a function of x. Thus, by taking V (and hence U) smaller, if necessary,

~ we may assume det Df # 0 on U and therefore that Df (x) is invertible on U.

For y = f(x) € V we want to show that Dg(y) exists and is the inverse of
B:=Df(g(). Take y + k= f(x+ k) € V. Then

L]

(9.2.1) = Z eyt h — oy = lh+ A7 (fx) — flx+ M)
= lh— A" k) > (IRl — A 0L

SO
L Al 1)
WK a2 foy e B
o C1ATHIKNZ 55 and e < S

Since g(y + k) —g(y) — B 'k=h— B 'k=—-B~!(f(x+ h) — f(x) — Bh), we get

lgly+k —g@) — Bkl B I fx+h) — f(x)— Bhl|
- 5> 0
(L] a/2 [ all Il <211kl foe—>0

which proves Dg(y) = B~L.

Finally, suppose f € C" and g € C* for some k < r. Then Df(g(y)) € C* and so
is its inverse Dg by using the formula for matrix inverses (the entries of A~" are
polynomials in those of A divided by det A # 0). Thus, g € C¥1. O






