
M2AA1 Differential Equations
Exercise sheet 3 answers

1. We have, d(x,y) = d(y,x), d(x,y) = 0 if and only if x = y and the triangle inequality d(x,y) + d(y, z) ≥
d(x, z). From the latter it follows that d(y, z) = 1

2(d(z,y) + d(y, z)) ≥ 1
2d(z, z) = 0 for all y, z.

2. A metric space is complete if every Cauchy sequence in it converges. For the mentioned examples, we use
the (natural) distance function d(x, y) = |x− y|.

• Q: is not a complete metric space, since Cauchy sequences in Q need not converge to have a limit
in Q. For example the Fibonacci sequence {an}n∈N with a0 = 1 and an = 1/(1 + an−1) converges to
(
√

5− 1)/2 6∈ Q.

• R: the real line is in fact defined as the completion of Q, i.e. R is the smallest complete metric space
containing Q.

• Z: the tail of every Cauchy sequence in Z must be constant, with integer value. Hence, the limit of any
such sequence is in Z so (Z, d) is a complete metric space.

• [0, 1]: If for a Cauchy sequence in R every element lies inside [0, 1] then so lies the limit point, so [0, 1]
is a complete metric space.

• [0, 1): If the interval is half open, we can have a Cauchy sequence in [0, 1) that converges to 1. For
instance, the sequence {an}n∈N with an = 1 − 1/n is a Cauchy sequence in [0, 1) but it does converge
to 1 which lies outside [0, 1). Hence [0, 1) is not a complete metric space.

3. First we note that from the condition it immediately follows that if there is a fixed point of F then it must
be unique. Namely, if x 6= y, then if x and y would be fixed points of F it follows that d(x, y) < d(x, y)
which is a contradiction.

Define xn = Fn(x) and let an = d(xn+1, xn). Because F is shrinking, an is decreasing. Since an is bounded
from below (by 0), an converges to some c ≥ 0 as n → ∞: limn→∞ d(xn+1, xn) = c ≥ 0. By compactness
of X, the sequence {xn}n∈N has a converging subsequence {xnk}k∈N (with nk a strictly increasing function
of k). We now consider the sequences {yk}k∈N and {zk}k∈N with yk := xnk and zk := xnk+1. As {xnk}k∈N
is by construction converging to some point x ∈ X, we have limk→∞ yk = x and limk→∞ zk = F (x)
with d(x, F (x)) = c. Then d(F (x), F 2(x)) = c, as if d(F (x), F 2(x)) < c we would have limn→∞ an < c
as well, by continuity of F and d. But this implies that in case x 6= F (x) we obtain a contradiction:
c = d(F (x), F 2(x)) < d(x, F (x)) = c. Hence limn→∞ an = d(x, F (x)) = c = 0 so that F (x) = x and the
point of convergence x is a fixed point (and the unique fixed point) of F . Hence limn→∞ F

n(z) = x for all
z ∈ X where x is the unique fixed point of F in X.

An example that satisfies the theorem, but where convergence is not exponential is F : [0, 1] → [0, 1] with
F (x) = x(1−x/2), so that if (x, y) 6= (0, 0) d(F (x), F (y)) = |x− 1

2x
2−y+ 1

2y
2| = |(x−y)(1−(x+y)/2)| < |x−y|

as 1− (x+ y)/2 < 1. Assume that K were a contraction constant for F . But taking x = 0, we would have
for all 1 ≥ y > 0: y(1− y/2) = |y− (y2)/2| ≤ Ky. But for y sufficiently close to x = 0 we have 1− y/2 > K,
contradicting the fact that K is a contraction constant.

4. As in course notes; but also F ◦ F−1(y) = y implies d
dy (F ◦ F−1)(y) = 1 and by the chain rule F ′(F−1(y)) ·

(F−1)′(y) = 1 implying (F−1)′(y) = 1/F ′(x) since F (x) = y.

5. We first establish the remark in the hint. By definition, since x(t) with initial condition x(0) = y satisfies
x(t) = Φt(y), we have

d

dt
Φt(y) = f(Φt(y)).

We note in this expression that y is a constant initial condition (independent of t). Still, of course, the
expression holds for all possible initial conditions y ∈ Rm. Thus we also have

d

dt
Φt = f ◦ Φt,
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where ◦ denotes composition.

We differentiate both sides with respect to y in the equilibrium point x0:

d

dt
DΦt(x0) = Df(Φt(x0))DΦt(x0) = Df(x0)DΦt(x0).

From this linear (matrix valued) ODE it follows that

DΦt(x0) = exp(Df(x0)t),

where we used the fact that Φ0(y) = DΦ0(y) = y for all y.

If all eigenvalues λi of Df(x0) have negative real part then all eigenvalues of DΦt(x0) (with t > 0) have
eigenvalues exp(λi), the modulus of which consquently is bounded from above by a number K < 1. We can
apply the derivative test with C being equal to a sphere with radius ρ around x0, with ρ suffuciently close
to zero.

6. See attachment.

7. See atachments.

8. (a) If F and G are linear maps, then the surfaces are linear subspace of Rm. Let us call the intersection point
of these surfaces (without loss of generality) 0 so that F (0) = G(0) = 0. Let H(x, y) = F (x) − G(y).
It is useful to note that if H is linear we can represent it in matrix form as

H = (F,−G) : Rn × Rm → Rk, so that H

(
x
y

)
= (F,−G)

(
x
y

)
= Fx−Gy,

where F is a k×n matrix and G a k×m matrix. Of course, we have H(0) = 0. The matrix representation
of H (that is equal to DH since H is linear) consists of column vectors ∂F

∂si
(0) (with i = 1, . . . n) and

∂G
∂si

(0) (with i = n + 1, . . . n + m). Let us assume that these column vectors span Rk, so that there
are at least k linearly independent column vectors. Let A be the matrix obtained from DH by taking
k column such linearly independent column vectors and write DH = A(λ) where λ = Rm+n−k are
parameters representing the remaining column vectors. By construction A is invertible so that, by the
Implicit Function Theorem, the zeros of H can be continued uniquely as function of λ ∈ Rn+m−k. We
thus have x(λ) and we can see this solution set as a graph over λ so that locally the dimension of this
solution set is equal to the dimension of λ, i.e. n+m− k.

(b) If the functions F and G are nonlinear, the same argument can be carried through where we observe
that the columns of DH are given by the tangent vectors ∂F

∂si
(0) (with i = 1, . . . n) to the surface given

by F , and tangent vectors ∂G
∂si

(0) (with i = n + 1, . . . n + m) to the surface given by G. One often
refers to the span of these respective sets of tangent vectors as the tangent space at 0. If the sum of
the tangent spaces of the two surfaces in the intersection point is equal to the ambient space Rm we
can carry through the argument used above to obtain the solution set x(λ) as a graph over Rm+n−k so
that the dimension of the intersection set is indeed m+ n− k.

(c) If we add additional p parameters, we can include them in λ so that λ ∈ Rm+n−k+p. By application of
the same argument (noting that the transversality is a property that persists under small perturbations
(in the C1 sense, i.e. small deviations in the value of map and it’s derivative)) we obtain a (m+n−k+p)-
dimensional solution set near 0 which we can also view as a continuation in p directions of the (m+n−k)-
dimensional solution set obtained in (b) above.

In the particular case of the intersection of two two-dimensional surfaces in R3 we thus find that transversality
implies that (locally) the intersection consists of a curve. Transversality implies for the intersection of a
curve and a two-dimensional surface in R3 that the intersection is isolated (i.e. there is a small ball around
the intersection point in which no other intersection point lies).

9. See atachments.
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