M2AA1 Differential Equations Exercise sheet 3

- 1. Show that from the conditions on the distance function d (in the definition of a metric space) it follows that the distance is *positive definite*: $d(x, y) \ge 0$ for all $x, y \in X$.
- 2. Decide, with proof, which of the following are complete metric spaces (with the natural metric): \mathbb{R} , \mathbb{Q} , \mathbb{Z} , [0,1], and [0,1).
- 3. Suppose that X is a bounded and closed subset of \mathbb{R}^n , and $F: X \to X$ is shrinking such that

$$d(F(x), F(y)) < d(x, y)$$
, for any $x \neq y$.

Prove that F has a unique fixed point $x_0 \in X$ and $\lim_{n\to\infty} F^n(x) = x_0$ for all $x \in X$. Can you give an example where the convergence is not exponential?

- 4. Prove that (as appears at the end of Inverse Function Theorem on \mathbb{R}), if $F : \mathbb{R} \to \mathbb{R}$ is C^1 (continous with continuous first derivative) and F is invertible near x_0 , then $(F^{-1})'(y) = 1/F'(x)$ for y = F(x) near $F(x_0)$.
- 5. Consider an equilibrium \mathbf{x}_0 of an autonomous ODE $\dot{\mathbf{x}} = f(\mathbf{x})$ in \mathbb{R}^m . Use the derivative test in \mathbb{R}^m (see course notes) to show that if all eigenvalues of the derivative $Df(\mathbf{x}_0)$ have negative real part, then the flow near the equilibrium is a contraction and hence that the equilibrium is asymptotically stable. (Note that this generalizes an earlier similar observation for equilibria of *linear* ODEs.) [Hint: show first that the derivative of the time-t flow at \mathbf{x}_0 is given by $D\Phi^t(\mathbf{x}_0) = \exp(Df(\mathbf{x}_0)t)$.]
- 6. (a) Consider the polar coordinate transformation

$$\varphi : \mathbb{R}^2 \to \mathbb{R}^2$$
 where $\varphi(r, \theta) = (r \cos \theta, r \sin \theta).$

Show that φ is *locally invertible* whenever $r \neq 0$. Is φ invertible on $\mathbb{R}^2 \setminus \{r = 0\}$?

(b) Along the same lines, describe the invertibility properties of the spherical coordinate transformation

 $\Sigma : \mathbb{R}^3 \to \mathbb{R}^3$ where $\Sigma(r, \theta, \phi) = (r \sin \phi \cos \theta, r \sin \phi \sin \theta, r \cos \theta).$

- 7. For the following maps $f : \mathbb{R}^m \to \mathbb{R}^m$ and points $\mathbf{a} \in \mathbb{R}^m$
 - (i) m = 2, $f(x, y) = (\cos x, xy)$, $\mathbf{a} = (\pi, -1)$ (ii) m = 3, f(x, y, z) = (3x + y, z - 3y, x + z), $\mathbf{a} = (2, -3, 5)$ (iii) m = 3, f(x, y, z) = (xy, yz, xz), $\mathbf{a} = (1, 0, -1)$
 - (iv) m = 3, $f(x, y, z) = (xe^y, xyz, \ln |z|)$, $\mathbf{a} = (2, 0, 1)$

establish whether f is invertible in a neighbourhood of the point **a**. If so, where possible find an explicit expression for the inverse of otherwise find its Taylor expansion up to the lowest nonlinear order (that has a nontrivial contribution). In that case also calculate the derivative of f^{-1} at $f(\mathbf{a})$.

- 8. Suppose that two smooth surfaces of dimension n and m in \mathbb{R}^k (n, m < k) intersect each other in a point \mathbf{p} . Let us assume that (locally, near \mathbf{p}) the surfaces are defined by the maps $F : \mathbb{R}^n \to \mathbb{R}^k$ and $G : \mathbb{R}^m \to \mathbb{R}^k$, respectively. Note that a point of intersection of the two surfaces is a root of the map $H : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^k$ defined by $H(\mathbf{x}, \mathbf{y}) = F(\mathbf{x}) - G(\mathbf{y})$, i.e. if p is a point of intersection then there exists \mathbf{x} (coordinates on the n-dimensional surface) such that $p = F(\mathbf{x}) = G(\mathbf{y})$. Answer the following questions under the assumption that k < m + n. If you have difficulty working with general k, m, n you are advised to first work out answers in the special cases that k = 3 with n = m = 2 (intersection of two 2-dimensional surfaces in \mathbb{R}^3) and n = m + 1 = 2 (intersection of a 1-dimensional curve and a 2-dimensional surface in \mathbb{R}^3).
 - (a) Suppose that F and G are linear maps, and p = 0 is the point of intersection. Identify a condition on F and G that implies that the dimension of the intersection of the surfaces is equal to m + n k.
 - (b) Formulate a corresponding condition involving the derivatives of the maps F and G in the intersection point so that the dimension of the intersection is also equal to m + n - k if the maps F and G are not linear. (This should generalize an observation made in the lecture (and course notes) for the intersection of two curves in \mathbb{R}^2 .)
 - (c) The condition you have identified in (b) is called *transversality*. Show that such *transverse* intersections of smooth surfaces are persistent (under smooth perturbations).
- 9. Prove the Inverse Function Theorem in \mathbb{R}^m , as stated in the course notes.