M2AA1 Differential Equations
Exercise sheet 3

1.

Show that from the conditions on the distance function d (in the definition of a metric space) it follows that
the distance is positive definite: d(x,y) > 0 for all z,y € X.

Decide, with proof, which of the following are complete metric spaces (with the natural metric): R, Q, Z,

[0,1], and [0,1).
Suppose that X is a bounded and closed subset of R, and F': X — X is shrinking such that
d(F(x), F(y)) < d(z,y), for any x # y.

Prove that F' has a unique fixed point 2o € X and lim, . F"(z) = x for all x € X. Can you give an
example where the convergence is not exponential?

Prove that (as appears at the end of Inverse Function Theorem on R), if F': R — R is C'! (continous with
continuous first derivative) and F' is invertible near zg, then (F~1)(y) = 1/F'(z) for y = F(x) near F(xg).

. Consider an equilibrium xg of an autonomous ODE % = f(x) in R™. Use the derivative test in R™ (see

course notes) to show that if all eigenvalues of the derivative D f(xg) have negative real part, then the flow
near the equilibrium is a contraction and hence that the equilibrium is asymptotically stable. (Note that this
generalizes an earlier similar observation for equilibria of linear ODEs.) [Hint: show first that the derivative
of the time-t flow at x¢ is given by D®!(xq) = exp(D f(x¢)t).]

(a) Consider the polar coordinate transformation
¢ :R* - R? where ¢(r,0) = (rcosf,rsind).

Show that ¢ is locally invertible whenever r # 0. Is o invertible on R?\ {r = 0}?

(b) Along the same lines, describe the invertibility properties of the spherical coordinate transformation

¥ :R? — R3 where X(r,0,¢) = (rsin¢cosf, rsinpsinb,rcosh).

For the following maps f : R™ — R™ and points a € R™

(i) m=2, f(z,y) = (cosz,zy), a= (m,—1)

(ii) m =3, f(z,y,2) = Bx +y,z — 3y,x + z), a= (2,-3,5)
(iii) m =3, f(z,y,2) = (zy,yz,x2), a= (1,0,—1)
(iv) m =3, f(x,y,2) = (ze¥,zyz,In|z|), a = (2,0,1)

establish whether f is invertible in a neighbourhood of the point a. If so, where possible find an explicit
expression for the inverse of otherwise find its Taylor expansion up to the lowest nonlinear order (that has
a nontrivial contribution). In that case also calculate the derivative of f~1 at f(a).



8. Suppose that two smooth surfaces of dimension n and m in R¥ (n,m < k) intersect each other in a point p.
Let us assume that (locally, near p) the surfaces are defined by the maps F : R” — R* and G : R™ — RF,
respectively. Note that a point of intersection of the two surfaces is a root of the map H : R® x R™ — RF
defined by H(x,y) = F(x) — G(y), i.e. if p is a point of intersection then there exists x (coordinates on
the n-dimensional surface) and y (coordinates on the m-dimensional surface) such that p = F(x) = G(y).
Answer the following questions under the assumption that & < m + n. If you have difficulty working with
general k,m,n you are advised to first work out answers in the special cases that £k = 3 with n = m = 2
(intersection of two 2-dimensional surfaces in R?) and n = m + 1 = 2 (intersection of a 1-dimensional curve
and a 2-dimensional surface in R3).

(a) Suppose that F' and G are linear maps, and p = 0 is the point of intersection. Identify a condition on
F and G that implies that the dimension of the intersection of the surfaces is equal to m + n — k.

(b) Formulate a corresponding condition involving the derivatives of the maps F' and G in the intersection
point so that the dimension of the intersection is also equal to m +n — k if the maps F' and G are not
linear. (This should generalize an observation made in the lecture (and course notes) for the intersection
of two curves in R2.)

(¢) The condition you have identified in (b) is called transversality. Show that such transverse intersections
of smooth surfaces are persistent (under smooth perturbations).

9. Prove the Inverse Function Theorem in R™, as stated in the course notes.



