M2AA1 Differential Equations

Exercise sheet 3

1. Show that from the conditions on the distance function d (in the definition of a metric space) it follows that the distance is positive definite: $d(x, y) \geq 0$ for all $x, y \in X$.
2. Decide, with proof, which of the following are complete metric spaces (with the natural metric): $\mathbb{R}, \mathbb{Q}, \mathbb{Z}$, $[0,1]$, and $[0,1)$.
3. Suppose that X is a bounded and closed subset of \mathbb{R}^{n}, and $F: X \rightarrow X$ is shrinking such that

$$
d(F(x), F(y))<d(x, y), \text { for any } x \neq y
$$

Prove that F has a unique fixed point $x_{0} \in X$ and $\lim _{n \rightarrow \infty} F^{n}(x)=x_{0}$ for all $x \in X$. Can you give an example where the convergence is not exponential?
4. Prove that (as appears at the end of Inverse Function Theorem on \mathbb{R}), if $F: \mathbb{R} \rightarrow \mathbb{R}$ is C^{1} (continous with continuous first derivative) and F is invertible near x_{0}, then $\left(F^{-1}\right)^{\prime}(y)=1 / F^{\prime}(x)$ for $y=F(x)$ near $F\left(x_{0}\right)$.
5. Consider an equilibrium \mathbf{x}_{0} of an autonomous $\mathrm{ODE} \dot{\mathbf{x}}=f(\mathbf{x})$ in \mathbb{R}^{m}. Use the derivative test in \mathbb{R}^{m} (see course notes) to show that if all eigenvalues of the derivative $D f\left(\mathbf{x}_{0}\right)$ have negative real part, then the flow near the equilibrium is a contraction and hence that the equilibrium is asymptotically stable. (Note that this generalizes an earlier similar observation for equilibria of linear ODEs.) [Hint: show first that the derivative of the time- t flow at \mathbf{x}_{0} is given by $D \Phi^{t}\left(\mathbf{x}_{0}\right)=\exp \left(D f\left(\mathbf{x}_{0}\right) t\right)$.]
6. (a) Consider the polar coordinate transformation

$$
\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \text { where } \varphi(r, \theta)=(r \cos \theta, r \sin \theta)
$$

Show that φ is locally invertible whenever $r \neq 0$. Is φ invertible on $\mathbb{R}^{2} \backslash\{r=0\}$?
(b) Along the same lines, describe the invertibility properties of the spherical coordinate transformation

$$
\Sigma: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \text { where } \Sigma(r, \theta, \phi)=(r \sin \phi \cos \theta, r \sin \phi \sin \theta, r \cos \theta)
$$

7. For the following maps $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ and points $\mathbf{a} \in \mathbb{R}^{m}$
(i) $m=2, f(x, y)=(\cos x, x y), \mathbf{a}=(\pi,-1)$
(ii) $m=3, f(x, y, z)=(3 x+y, z-3 y, x+z), \mathbf{a}=(2,-3,5)$
(iii) $m=3, f(x, y, z)=(x y, y z, x z), \mathbf{a}=(1,0,-1)$
(iv) $m=3, f(x, y, z)=\left(x e^{y}, x y z, \ln |z|\right), \mathbf{a}=(2,0,1)$
establish whether f is invertible in a neighbourhood of the point a. If so, where possible find an explicit expression for the inverse of otherwise find its Taylor expansion up to the lowest nonlinear order (that has a nontrivial contribution). In that case also calculate the derivative of f^{-1} at $f(\mathbf{a})$.
8. Suppose that two smooth surfaces of dimension n and m in $\mathbb{R}^{k}(n, m<k)$ intersect each other in a point \mathbf{p}. Let us assume that (locally, near \mathbf{p}) the surfaces are defined by the maps $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ and $G: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$, respectively. Note that a point of intersection of the two surfaces is a root of the map $H: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ defined by $H(\mathbf{x}, \mathbf{y})=F(\mathbf{x})-G(\mathbf{y})$, i.e. if p is a point of intersection then there exists \mathbf{x} (coordinates on the n-dimensional surface) and \mathbf{y} (coordinates on the m-dimensional surface) such that $p=F(\mathbf{x})=G(\mathbf{y})$. Answer the following questions under the assumption that $k<m+n$. If you have difficulty working with general k, m, n you are advised to first work out answers in the special cases that $k=3$ with $n=m=2$ (intersection of two 2-dimensional surfaces in \mathbb{R}^{3}) and $n=m+1=2$ (intersection of a 1-dimensional curve and a 2 -dimensional surface in \mathbb{R}^{3}).
(a) Suppose that F and G are linear maps, and $p=0$ is the point of intersection. Identify a condition on F and G that implies that the dimension of the intersection of the surfaces is equal to $m+n-k$.
(b) Formulate a corresponding condition involving the derivatives of the maps F and G in the intersection point so that the dimension of the intersection is also equal to $m+n-k$ if the maps F and G are not linear. (This should generalize an observation made in the lecture (and course notes) for the intersection of two curves in \mathbb{R}^{2}.)
(c) The condition you have identified in (b) is called transversality. Show that such transverse intersections of smooth surfaces are persistent (under smooth perturbations).
9. Prove the Inverse Function Theorem in \mathbb{R}^{m}, as stated in the course notes.
