
M2AA1 Differential Equations

Exercise sheet 2 answers

1. (a) Let (x, y) ∈ Rm × R and rewrite the ODE as the system dx
dt = f(x, y) and dy

dt = 1.

(b) We have x(t) = Φt,t0(x(t0)) and dx(t)
dt = f(x, t). By definition, we have

dx

dt
(t0) = lim

ε→0

x(t0 + ε) − x(t0)

ε
,

= lim
ε→0

Φt0+ε,t0(x(t0)) − Φt0,t0(x(t0))

ε
,

=
d

dt
Φt,t0 |t=t0(x(t0)).

Hence f(x, t) = d
dsΦ

s,t|s=t(x).

(c) We first write the ODE as

d

dt

(

x
y

)

=

(

2 1
2 −1

)(

x
y

)

+

(

−t
t

)

.

By a linear change of coordinates (to a basis consisting of the eigenvectors of the matrix

(

2 1
2 −1

)

)

the two coupled nonautonomous equations decouple. Let

(

x
y

)

= P

(

v
w

)

=

(

1 −3−
√

17
4

1 −3+
√

17
4

)

(

v
w

)

then
d

dt

(

v
w

)

=

(

1+
√

17
2 0

0 1−
√

17
2

)

(

v
w

)

+

(

7−
√

17
4 t

7+
√

17
4 t

)

.

The decoupled equations are of the form ż = az + bt. For each of these the initial value problem
z(t0) = z can be solved as z(t) = −bt/a− b/a2 + eatc, where c = e−t0a(z + bt0/q + b/q2). The associated
flow Φt1,t0 of this non-autonomous systems has the form

Φt1,t0(z) = −bt1/a − b/a2 + ea(t1−t0)(z + bt0/a + b/a2).

(Note that we can verify that the relation obtained in (b) indeed holds.)

The flow for the original equation is obtained by transforming coordinates back to (x, y)T : in the
(v,w)T coordinates

Φt1,t0

(

v
w

)

=

(

e
1+

√
17

2
(t1−t0) 0

0 e
1−

√
17

2
(t1−t0)

)

(

v
w

)

+





−7+
√

17
2(1+

√
17)

t1 − (−7+
√

17)2

1+
√

17
+ e

1+
√

17

2
(t1−t0)(− −7+

√
17

2(1+
√

17)
t0 + (−7+

√
17)2

1+
√

17
)

−7−
√

17
2(1−

√
17)

t1 − (−7−
√

17)2

1−
√

17
+ e

1−
√

17

2
(t1−t0)(− −7−

√
17

2(1−
√

17)
t0 + (−7−

√
17)2

1−
√

17
)



 .

and in (x, y)T coordinates

Φt1,t0

(

x
y

)

= P

(

e
1+

√
17

2
(t1−t0) 0

0 e
1−

√
17

2
(t1−t0)

)

P−1

(

x
y

)

+

P





−7+
√

17
2(1+

√
17)

t1 − (−7+
√

17)2

1+
√

17
+ e

1+
√

17

2
(t1−t0)(− −7+

√
17

2(1+
√

17)
t0 + (−7+

√
17)2

1+
√

17
)

−7−
√

17
2(1−

√
17)

t1 − (−7−
√

17)2

1−
√

17
+ e

1−
√

17

2
(t1−t0)(− −7−

√
17

2(1−
√

17)
t0 + (−7−

√
17)2

1−
√

17
)



 .
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2. (a) We treat the matrix first as (a special case of) a complex matrix. There are two eigenvalues λ± = α±iβ.
Let v± be the eigenvectors for λ±. Because A is a real matrix it follows that v− = v+. We seek a basis
for Eλ− . Since the eigenvalue is complex, for the moment we will treat the problem as if it was posed
in C4 and we will return later to R4. We thus seek a basis for Eλ− (as complex vector space). Since
λ− has algebraic multiplicity 2, it is generated by 2 linearly independent vectors (in C4). One natural
candidate for a basis vector is the eigenvector v−. But since dim Eλ− = 2, we need another linearly
independent one. We call this w−. We know that w− is not an eigenvector of A, because if it were, it
would be of the form cv− for some c ∈ C, and thus not linearly independent of v−.

We repeat this procedure for Eλ+
. Having already made a choice for w−, we choose the basis for Eλ+

as v+ and w+ = w−. It is not difficult to verify that if v− and w− are linearly independent, then so
are w− and w+.

So we have Eλ− = spanC(v−,w−) and Eλ+
= spanC(v+,w+).

We know that Av± = λ±v±. We now consider the images Aw±. We know about w− that w− ∈
ker(A − λ−I)2 but w− 6∈ ker(A − λ−I). It thus follows that (A − λ−)w− = cv− ∈ ker(A − λ−I) for
some nonzero c ∈ C. By choosing w−/c instead of w− from the beginning (which would also have been
fine) we would have obtained c = 1. So without loss of generality we may choose w− such that

(A − λ−I)w− = v− ⇔ Aw− = λ−w− + v−.

Since A is a real matrix it then follows (by taking conjugate of the above result) that

Aw+ = λ+w+ + v+.

Finally we need to go back to R4, which means that we need to find out which real vectors in R4 can be
constructed from our basis vectors v± and w±. We have seen how to do this in the course notes before.
Simplest way seems to be to use the 4 real vectors e− = (v− +v−), e+ = i(v− −v−), f− = (w− +w−)
and f− = i(w− − w−).

Then by writing out and using λ± = α ± iβ we obtain Ae± = αe± ∓ βe∓, Af± = αf± − βf∓ + e±.
Writing the basis vectors as

e− =









1
0
0
0









, e+ =









0
1
0
0









, f− =









0
0
1
0









, f+ =









0
0
0
1









we obtain the desired matrix expression.

(b) 1. One way to obtain this is by using the complex Jordan normal form that we already (possibly
unknowingly) derived in part (a), where it is not so difficult to explicitly calculate the exponential from
the infinite sum. Using the basis

v− =









1
0
0
0









, v+ =









0
1
0
0









, w− =









0
0
1
0









, w+ =









0
0
0
1









from the formulas in (a) we obtain the following matrix representation, which we will call B:

B =









λ− 1 0 0
0 λ− 0 0
0 0 λ+ 1
0 0 0 λ+









.
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From this blockdiagonal form, it is not difficult to see that exp(At) is again blockdiagonal with the

blocks
(

λ 1

0 λ

)

replaced by
(

e
λt

te
λt

0 e
λt

)

, thus

exp(Bt) =









eλ−t teλ−t 0 0
0 eλ−t 0 0
0 0 eλ+t teλ+t

0 0 0 eλ+t









.

Using the result in Question 1(c) of Exercise sheet 1, we find that we can use the coordinate trans-
formation to the real basis {e−, e+, f−, f+} of (a), to obtain exp(At) as exp(At) = P−1 exp(Bt)P
where

P =









1 i 0 0
0 0 1 i
1 −i 0 0
0 0 1 −i









yielding

exp(At) = exp(αt)









cos(βt) sin(βt) t cos(βt) t sin(βt)
− sin(βt) cos(βt) −t sin(βt) t cos(βt)

0 0 cos(βt) sin(βt)
0 0 − sin(βt) cos(βt)









2. An alternative way to compute exp(At) is to realize that A has a block structure that can be
exploited. We can write

A =

(

R I2

02 R

)

,

where R =

(

α β
−β α

)

, 02 =

(

0 0
0 0

)

and I2 =

(

1 0
0 1

)

. Then, since these 2×2 matrices commute

with each other, the computation of iterates of A is very similar as the computation of iterates of the

matrix

(

λ 1
0 λ

)

, so that

Ak =

(

Rk kRk−1

0 Rk

)

and exp(At) =

(

exp(Rt) t exp(Rt)
0 exp(Rt)

)

.

The result follows directly using the form of exp(Rt) already computed in the lecture.

(c) If α < 0 we have exp(At) → 0 (zero matrix) since for all n > 0, limt→∞ exp(αt)tn = 0. Hence for all
x ∈ R4 we have limt→∞ exp(At)x = 0 and 0 is an asymptotically stable equilibrium point (actually
even a ”global” attractor).

3. A straightforward way to calculate exp(At) is to realize that it is the solution of the ODE ẋ = Ax. We write

ẋ4 = −3x4, ẋ3 = −3x3 + x4, ẋ2 = −3x2 + x3, ẋ1 = −3x1 + x2.

We solve them one-by-one:

x4(t) = e−3tx4(0),

ẋ3(t) = −3x3 + e−3tx4(0) ⇔ x3(t) = e−3tx3(0) + te−3tx4(0),

ẋ2(t) = −3x2 + e−3tx3(0) + te−3tx4(0) ⇔ x2(t) = e−3tx2(0) + te−3tx3(0) +
t2

2
e−3tx4(0),

ẋ1(t) = −3x1 + e−3tx2(0) + te−3tx3(0) +
t2

2
e−3tx4(0) ⇔

x1(t) = e−3tx1(0) + te−3tx2(0) +
t2

2
e−3tx3(0) +

t3

6
e−3tx4(0).
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From this, we construct the flow matrix as

exp(At) =









e−3t te−3t 1
2t2e−3t 1

6t3e−3t

0 e−3t te−3t 1
2t2e−3t

0 0 e−3t te−3t

0 0 0 e−3t









.

In order to understand the behaviour of | exp(At)x|
|x| when t ≥ 0, we note show that for any ε > 0 there exists

a c ∈ R such that tne−3t < ce−(3−ε)t. Namely, tne−3t − ce−(3−ε)t = e−3t(tn − ceεt). As the exponential grows
faster as tn, there is a t0(c) such that (tn − ceεt) < 0 for all t > t0. By choosing c large enough we obtain
t0(c) ≤ 0 so that the inequality holds for all t ≥ 0. We quantify the latter assertion: the desired inequality
implies

n ln(t) < ln(c) + εt ⇔ n ln(t) − εt < ln(c).

The left hand side of this equation is a function of t that has a maximum at t = n/ε (set derivative wrt t to
zero and verify that the 2nd derivative is negative at this point). We must choose c such that ln(c) is larger
than the maximum of the left hand side:

n ln(
n

ε
) − n < ln(c) ⇔ n ln(

n

eε
) < ln(c) ⇔

( n

eε

)n
< c.

This thus provides a concrete estimate on the minimal size of c.

This implies that we can bound all matrix coefficients with Ce−(3−ε)t for some C ∈ R which in turn implies
(see before) that the matrix norm is bounded by some De−(3−ε)t for some D ∈ R. As the matrix norm is

defined by the supremum of | exp(At)x|
|x| we have proven the desired bound, where exponent µ = 3 − ε and

D(ε) where ε > 0 can be as small as one likes (but of course limε→0 D(ε) → ∞).

4. We have w1, . . . ,wk as the basis of the orthogonal complement of ker P and u1, . . . ,uk as the basis of the
range of P . We define the matrices B = (w1, . . . ,wk) and A = u1, . . .um.

We note that since P 2 = P , it follows that P acts as the identity map on its range, and hence we have
Rm = ker P ⊕ ImP .

In order for the formula for the projection to make sense, we first verify that the k × k matrix B⊤A is
invertible. We write

B⊤A =







w
⊤
1
...

w
⊤
k






(u1, . . . ,uk)

Suppose that ker B⊤A contains a vector v =







v1
...

vk






∈ Rk \ {0}, then

B⊤Av =







w
⊤
1
...

w
⊤
k







(

k
∑

i=1

viui

)

= 0.

The latter implies that there exists a nonzero vector in ImP such that it is orthogonal to the orthogonal
complement of ker P , in other words inside ker P . But we have already noted that ker P and ImPare
complementary so that they do not share a common nonzero vector.

We need to verify the properties of the projection P = A(B⊤A)−1B⊤:

• P 2 = A(B⊤A)−1B⊤A(B⊤A)−1B⊤ = A(B⊤A)−1B⊤ = P .

• We first remark that by the definition of P we have ker B⊤ ⊆ ker P . Since B⊤
v = (w⊤

1 v, . . . ,w⊤
mv)⊤, by

the definition of the vectors wi we also find that if v ∈ ker P then also v ∈ ker B⊤, i.e. ker P ⊆ ker B⊤.
Hence ker B⊤ = ker P , as desired.
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• B⊤Pv = B⊤A(B⊤A)−1B⊤
ui = B⊤

v for any v ∈ Rm. In order to show that indeed Pu = u for
all u ∈ ImP we argue that B⊤ is invertible on ImP . If this was not the case, ker B⊤ would have a
nontrivial vector common with ImP , which is not the case since ker B⊤ = ker P .

In the case of a projection on the complex vector space Cm, we need to replace the transpose of B by the
transpose of the complex conjugate: P = A(B̄⊤A)−1B̄⊤.

The proof is similar, but we need to recall that the inner product (defining when a vector is perpendicular
to another) involves a complex conjugate x · y =

∑m
i=1 xiȳi.

5. (a) If M = NnNn′ , the matrix coefficient Mi,k is equal to

Mi,k =

m
∑

j=1

(Nn)i,j(Nn′)j,k = (Nn)i,i+n(Nn′)i+n,i+n+n′ =







0 if k 6= i + n + n′

or k = i + n + n′ ≥ m,
1 if k = i + n + n′ < m.

so that indeed Mi,k = (Nn+n′)i,k. If n + n′ ≥ m then consequently M = Nn+n′ = 0.

(b) From (a) it follows that Nk
j = Nk·j which is equal to the zero matrix if k · j ≥ m. Hence

exp(Nj) =

∞
∑

k=0

Nk
j

k!
=

∑

k=N,k·j<m

Nk
j

k!
.

(c) As I and N1 commute, we have

exp(Mt) = exp(λt) exp(tN1) = exp(λt)
m−1
∑

k=0

tk

k!
Nk =













eλt teλt · · · tm−1

(m−1)!e
λt

0
. . .

. . .
...

...
. . .

. . . teλt

0 · · · 0 eλt













.

(d) The solution for Question 3 (with real eigenvalue 3) follows immediately from the above formula. In
the case of complex eigenvalues λ = α ± iβ, defining

Rλ =

(

α β
−β α

)

, and I =

(

1 0
0 1

)

,

the Jordan normal form admits the decomposition

M =



















Rλ I 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . .

. . . I
0 · · · · · · 0 Rλ



















=



















Rλ 0 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . .

. . . 0
0 · · · · · · 0 Rλ



















+



















0 I 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . .

. . . I
0 · · · · · · 0 0



















where the matrices on the right hand side commute. Hence the exponential is the product of the expo-

nentials of the matrices on the right hand side. We have exp(Rλt) = eαtR̂β with R̂β =

(

cos(βt) sin(βt)
− sin(βt) cos(βt)

)

and

exp(t



















0 I 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . .

. . . I
0 · · · · · · 0 0



















) =













I tI · · · tm−1

(m−1)!I

0
. . .

. . .
...

...
. . .

. . . tI
0 · · · · · · I
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so that

exp(Mt) = eαt













R̂β tR̂β · · · tm−1

(m−1)! R̂β

0
. . .

. . .
...

...
. . .

. . . tR̂β

0 · · · · · · R̂β













One readily verifies that the answer of Question 1 on Exercise sheet 2 has this form.

6. Let T ∈ Gl(m, R), then TST−1 is semi-simple if and only if S is, and TNT−1 is nilpotent if and only if N is.
Hence, without loss of generality we may consider the coordinate frame for which a matrix M ∈ gl(mR) is in
Jordan normal form. As in Question 2 above, every Jordan block can be written as the sum of a semi-simple
matrix S which is (block-)diagonal and an off-diagonal nilpotent matrix N . It is readily verified that these
matrices commute, i.e. SN = NS. As Rm can be decomposed into generalized eigenspaces Eλ that are
M -invariant (and hence also S- and N -invariant), without loss of generality we focus on the case that the
domain is equal to one generalized eigenspace (so in what follows we let λ ∈ R but in the case of complex
eigenvalues the result follows in a similar way by viewing the matrix temporarily as a complex one [where
in fact the Jordan-Chevalley decomposition also holds]).

We have at least one decomposition into semi-simple and nilpotent part M = S + N equal to the Jordan
normal form. To show it is unique, suppose that M = Ŝ + N̂ is another such decomposition.

Since M commutes with both S and Ŝ, we find that M , S and Ŝ have the same generalized eigenspaces.
Since S is (complex) diagonalizable, we observe that S and Ŝ are simultaneously (complex) diagonalizable
from which it follows that S and Ŝ commute and that S − Ŝ is also (complex) diagonalizable and thus also
semi-simple. From the fact that S and Ŝ are simultaneously diagonalizable we also deduce that N and N̂
commute: namely, (N + S)(N̂ + Ŝ) = (N̂ + Ŝ)(N + S) ⇔ NN̂ = N̂N in the coordinate frame in which S
and Ŝ are simultaneously diagonal, and hence this relation holds in any coordinate frame. We now consider
N − N̂ , and observe that this is nilpotent since if Np = N̂p = 0 then (N − N̂)2p = 0. We now use the fact
that M = S + N = Ŝ + N̂ to derive that S − Ŝ = N − N̂ . Since only the 0 matrix has the property that it
is both semi-simple and nilpotent at the same time, we obtain that S = Ŝ and N = N̂ .

Let M =

(

0 0
1 0

)

then M = S + N with

S =

(

0 −1
1 0

)

and N =

(

0 1
0 0

)

where S is semi-simple and N is nilpotent. Of course, M is also nilpotent, so the decomposition of M into
nilpotent and semi-simple parts here is not unique (if we do not insist on these to commute with each other).
One easily verifies that with the above choices SN 6= NS.

7. (a) (i) A1 has eigenvalues ±2i so A1 is semi-simple and J-C decomposition is A1 = A1 + 0. Real Jordan

normal form is

(

0 2
−2 0

)

. A2 has double eigenvalue 8 but only one eigenvector (1, 2)T . So A2 is

not semi-simple and the real Jordan normal form is

(

8 1
0 8

)

. Since in this case the semi-simple

part must be a multiple of the identity matrix, the J-C decomposition is given by A2 = S + N

where S = 8I and N =

(

−2 1
−4 2

)

. Clearly SN = NS and also N2 = 0.

(ii) The complex eigenvectors for the eigenvalues ±2i are (1, 4±2i
5 )T . Thus

exp(At) = P

(

e2it 0
0 e−2it

)

P−1

where

P =

(

1 1
4+2i

5
4−2i

5

)

, P−1 =

(

1
2 + i −5

4 i
1
2 − i 5

4 i

)
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yielding

exp(A1t) =

(

cos(2t) − 2 sin(2t) (5/2) sin(2t)
−2 sin(2t) cos(2t) + 2 sin(2t)

)

.

Using the J-C decomposition of A2 we find exp(St) = e8tI and exp(Nt) = I + Nt so that

exp(A2t) = e8t(I + Nt) = e8t

(

1 − 2t t
−4t 1 + 2t

)

Sketches of the phase portraits (anything roughly close should do): [PLEASE NOTE THAT AR-
ROWS SHOULD BE ADDED TO SKETCHED SOLUTION CURVES INDICATE DIRECTION
OF THE FLOW]

(b) (i) ker P1 is the eigenspace of A for eigenvalue 4.

(ii) P1 is the projection to the eigenspace of A for eigenvalue −1 along the direction of the eigenspace
for eigenvalue 4. P2 is the projection to the eigenspace of A for eigenvalue 4 along the direction of
the eigenspace for eigenvalue −1. Hence rangeP2 = ker P1 and rangeP1 = ker P2.

(iii) A = d
dt exp(At)|t=0 = −P1 + 4P2 =

(

1 3
2 2

)

.
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