M2AA1 Differential Equations Exercise sheet 2

- 1. Consider a nonautonomous ODE $\dot{\mathbf{x}} = f(\mathbf{x}, t)$ with $\mathbf{x} \in \mathbb{R}^m$.
 - (a) Show that by extending the phase space from \mathbb{R}^m to $\mathbb{R}^m \times \mathbb{R}$ this ODE can be rewritten as an autonomous ODE.
 - (b) Derive a relationship between the vector field f and the flow map $\Phi^{t_1,t_0} : \mathbb{R}^m \to \mathbb{R}^m$ associated to the nonautonomous ODE, so that $\Phi^{t_1,t_0}\mathbf{x}(t_0) = \mathbf{x}(t_1)$ for any solution $\mathbf{x}(t)$ of this ODE.
 - (c) Calculate the flow of the nonautonomous ODE

$$\begin{cases} \frac{d}{dt}x &= 2x + y - t\\ \frac{d}{dt}y &= 2x - y + t \end{cases}$$

- 2. Consider a linear autonomous vector field in \mathbb{R}^4 , $\frac{d\mathbf{x}}{dt} = A\mathbf{x}$, whose eigenvalues $\lambda = \alpha \pm i\beta$ are complex with algebraic multiplicity two and geometric multiplicity one.
 - (a) Show that one can choose coordinates so that A takes the (Jordan normal) form

$$A = \begin{pmatrix} \alpha & \beta & 1 & 0 \\ -\beta & \alpha & 0 & 1 \\ 0 & 0 & \alpha & \beta \\ 0 & 0 & -\beta & \alpha \end{pmatrix}$$

- (b) Compute the flow $\Phi^t = \exp(At)$ (with the coordinate choice of (a)). Hint: use the <u>complex</u> Jordan normal form of A.
- (c) Show that the equilibrium 0 is asymptotically stable if $\alpha < 0$.
- 3. With

$$A = \begin{pmatrix} -3 & 1 & 0 & 0\\ 0 & -3 & 1 & 0\\ 0 & 0 & -3 & 1\\ 0 & 0 & 0 & -3 \end{pmatrix},$$

calculate the flow $\exp(At)$ by explicitly integrating the flow $\dot{\mathbf{x}} = A\mathbf{x}$. Show that there exist positive constants c and μ , such that

$$|\exp(At)\mathbf{x}| < c\exp(-\mu t)|\mathbf{x}|, \quad \forall t \ge 0.$$

4. Prove the following proposition

Proposition 1 (Projection). A formula for the $m \times m$ matrix representing the projection in \mathbb{R}^m with a given range and kernel can be found as follows. Let the vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k$ form a basis for the range of the projection, and assemble these vectors in the $m \times k$ matrix A. The range and the kernel are complementary spaces, so the kernel has dimension m - k. It follows that the orthogonal complement of the kernel has dimension k. Let $\mathbf{w}_1, \ldots, \mathbf{w}_k$ form a basis for the orthogonal complement of the projection, and assemble these vectors in the matrix B. Then the projection to the range is given by

$$P = A(B^{\top}A)^{-1}B^{\top}$$

Show that the projection takes the form $P = A(\bar{B}^{\top}A)^{-1}\bar{B}^{\top}$ if the vector space is complex (\mathbb{C}^m) ? (Here \bar{B} denotes the complex conjugate of B.)

5. Let $N_n \in gl(m, \mathbb{R}), n \in \{0, 1, \dots, k-1\}$ be the $m \times m$ matrix with coefficients $N_{i,j}$ where $N_{i,i+n} = 1$ for $i = 1, \dots, m-n$ and $0 \le n \le m-1$ and $N_{i,j} = 0$ whenever $j - i \ne n$. For instance, with m = 3 we have $N_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. (Hint: To develop some intuition, although the following questions are formulated for general m, first answer them in the case that m = 3 and/or m = 4.)

- (a) Show that $N_j N_k = N_{j+k}$ if j + k < m and $N_j N_k = 0$ if $j + k \ge m$.
- (b) Compute $\exp(N_j)$.
- (c) Consider a matrix $M \in gl(m, \mathbb{R})$ which is a Jordan block with real eigenvalue λ . Thus $M = \lambda I + N_1$. Use this observation to compute $\exp(Mt)$ with $t \in \mathbb{R}$.
- (d) Use the result in (c) to compute $\exp(At)$, for the cases that the matrix A is as in Question 2 and Question 3 above.
- 6. A matrix is called *semi-simple* if the geometric multiplicity of each of its eigenvalues equals its algebraic multiplicity. Semi-simple matrices have a (block-)diagonal Jordan normal form. A matrix N is called *nilpotent* if there exists a $k \in \mathbb{N}$ such that its kth iterate equals the zero matrix, i.e. $N^k = 0$. Prove the following theorem (that underlies the calculations in Question 5 above):

Theorem 2 (Jordan-Chevalley decomposition). Any $M \in gl(m, \mathbb{R})$ has a unique decomposition M = S + Nwhere S is semi-simple, N is nilpotent and NS = SN.

(Hint: use the fact that in Jordan normal form this decomposition is easy to find, cf. Question 5.)

Can you give an example of the decomposition of a 2×2 matrix M into a semi-simple S and nilpotent N such that S and N do not commute? This to illustrate that the condition that SN = NS is essential for the "uniqueness" of the decomposition.

- 7. (2008 exam)
 - (a) Let

$$A_1 = \begin{pmatrix} -4 & 5 \\ -4 & 4 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 6 & 1 \\ -4 & 10 \end{pmatrix}.$$

- (i) Give the <u>real Jordan normal form</u> and <u>Jordan-Chevalley decomposition</u> of A_i , for i = 1, 2. [Note: You need <u>not</u> derive the coordinate transformation that transforms the matrices into Jordan normal form.]
- (ii) Calculate the flow $\Phi^t : \mathbb{R}^2 \to \mathbb{R}^2$ of the ODE

$$\frac{d\mathbf{x}}{dt} = A_i \mathbf{x}, \text{ for } i = 1, 2$$

and sketch the phase portraits. [Hint: In the calculation of the flow, for A_1 it may be convenient to use the fact that the matrix is conjugate to its Jordan normal form, and for A_2 it may be convenient to use the Jordan-Chevalley decomposition.]

• (b)] Let $A \in gl(2, \mathbb{R})$ be such that

$$\exp(At) = e^{-t}P_1 + e^{4t}P_2,$$

where

$$P_1 = \begin{pmatrix} \frac{3}{5} & -\frac{3}{5} \\ -\frac{2}{5} & \frac{3}{5} \end{pmatrix} \text{ and } P_2 = \begin{pmatrix} \frac{2}{5} & \frac{3}{5} \\ \frac{2}{5} & \frac{3}{5} \end{pmatrix}.$$

- (i) Discuss the relationship between ker P_1 and A.
- (ii) Explain why $P_1P_2 = P_2P_1 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.
- (iii) Calculate A.

version February 15, 2009