M2AA1 Differential Equations

Exercise sheet 2

1. Consider a nonautonomous ODE $\dot{\mathbf{x}}=f(\mathbf{x}, t)$ with $\mathbf{x} \in \mathbb{R}^{m}$.
(a) Show that by extending the phase space from \mathbb{R}^{m} to $\mathbb{R}^{m} \times \mathbb{R}$ this ODE can be rewritten as an autonomous ODE.
(b) Derive a relationship between the vector field f and the flow map $\Phi^{t_{1}, t_{0}}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ associated to the nonautonomous ODE, so that $\Phi^{t_{1}, t_{0}} \mathbf{x}\left(t_{0}\right)=\mathbf{x}\left(t_{1}\right)$ for any solution $\mathbf{x}(t)$ of this ODE.
(c) Calculate the flow of the nonautonomous ODE

$$
\left\{\begin{array}{l}
\frac{d}{d x}=2 x+y-t \\
\frac{d}{d t} y=2 x-y+t
\end{array}\right.
$$

2. Consider a linear autonomous vector field in $\mathbb{R}^{4}, \frac{d \mathbf{x}}{d t}=A \mathbf{x}$, whose eigenvalues $\lambda=\alpha \pm i \beta$ are complex with algebraic multiplicity two and geometric multiplicity one.
(a) Show that one can choose coordinates so that A takes the (Jordan normal) form

$$
A=\left(\begin{array}{rrrr}
\alpha & \beta & 1 & 0 \\
-\beta & \alpha & 0 & 1 \\
0 & 0 & \alpha & \beta \\
0 & 0 & -\beta & \alpha
\end{array}\right)
$$

(b) Compute the flow $\Phi^{t}=\exp (A t)$ (with the coordinate choice of (a)). Hint: use the complex Jordan normal form of A.
(c) Show that the equilibrium 0 is asymptotically stable if $\alpha<0$.
3. With

$$
A=\left(\begin{array}{rrrr}
-3 & 1 & 0 & 0 \\
0 & -3 & 1 & 0 \\
0 & 0 & -3 & 1 \\
0 & 0 & 0 & -3
\end{array}\right),
$$

calculate the flow $\exp (A t)$ by explicitly integrating the flow $\dot{\mathbf{x}}=A \mathbf{x}$. Show that there exist positive constants c and μ, such that

$$
|\exp (A t) \mathbf{x}|<c \exp (-\mu t)|\mathbf{x}|, \quad \forall t \geq 0
$$

4. Prove the following proposition

Proposition 1 (Projection). A formula for the $m \times m$ matrix representing the projection in \mathbb{R}^{m} with a given range and kernel can be found as follows. Let the vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ form a basis for the range of the projection, and assemble these vectors in the $m \times k$ matrix A. The range and the kernel are complementary spaces, so the kernel has dimension $m-k$. It follows that the orthogonal complement of the kernel has dimension k. Let $\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}$ form a basis for the orthogonal complement of the kernel of the projection, and assemble these vectors in the matrix B. Then the projection to the range is given by

$$
P=A\left(B^{\top} A\right)^{-1} B^{\top} .
$$

Show that the projection takes the form $P=A\left(\bar{B}^{\top} A\right)^{-1} \bar{B}^{\top}$ if the vector space is complex (\mathbb{C}^{m})? (Here \bar{B} denotes the complex conjugate of B.)
5. Let $N_{n} \in g l(m, \mathbb{R}), n \in\{0,1, \ldots, k-1\}$ be the $m \times m$ matrix with coefficients $N_{i, j}$ where $N_{i, i+n}=1$ for $i=1, \ldots, m-n$ and $0 \leq n \leq m-1$ and $N_{i, j}=0$ whenever $j-i \neq n$. For instance, with $m=3$ we have $N_{1}=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0\end{array}\right)$. (Hint: To develop some intuition, although the following questions are formulated for general m, first answer them in the case that $m=3$ and/or $m=4$.)
(a) Show that $N_{j} N_{k}=N_{j+k}$ if $j+k<m$ and $N_{j} N_{k}=0$ if $j+k \geq m$.
(b) Compute $\exp \left(N_{j}\right)$.
(c) Consider a matrix $M \in g l(m, \mathbb{R})$ which is a Jordan block with real eigenvalue λ. Thus $M=\lambda I+N_{1}$. Use this observation to compute $\exp (M t)$ with $t \in \mathbb{R}$.
(d) Use the result in (c) to compute $\exp (A t)$, for the cases that the matrix A is as in Question 2 and Question 3 above.
6. A matrix is called semi-simple if the geometric multiplicity of each of its eigenvalues equals its algebraic multiplicity. Semi-simple matrices have a (block-)diagonal Jordan normal form. A matrix N is called nilpotent if there exists a $k \in \mathbb{N}$ such that its k th iterate equals the zero matrix, i.e. $N^{k}=0$. Prove the following theorem (that underlies the calculations in Question 5 above):

Theorem 2 (Jordan-Chevalley decomposition). Any $M \in g l(m, \mathbb{R})$ has a unique decomposition $M=S+N$ where S is semi-simple, N is nilpotent and $N S=S N$.
(Hint: use the fact that in Jordan normal form this decomposition is easy to find, cf. Question 5.)
Can you give an example of the decomposition of a 2×2 matrix M into a semi-simple S and nilpotent N such that S and N do not commute? This to illustrate that the condition that $S N=N S$ is essential for the "uniqueness" of the decomposition.
7. (2008 exam)
(a) Let

$$
A_{1}=\left(\begin{array}{ll}
-4 & 5 \\
-4 & 4
\end{array}\right), \quad A_{2}=\left(\begin{array}{rr}
6 & 1 \\
-4 & 10
\end{array}\right) .
$$

(i) Give the real Jordan normal form and Jordan-Chevalley decomposition of A_{i}, for $i=1,2$. [Note: You need not derive the coordinate transformation that transforms the matrices into Jordan normal form.]
(ii) Calculate the flow $\Phi^{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ of the ODE

$$
\frac{d \mathbf{x}}{d t}=A_{i} \mathbf{x}, \text { for } i=1,2
$$

and sketch the phase portraits. [Hint: In the calculation of the flow, for A_{1} it may be convenient to use the fact that the matrix is conjugate to its Jordan normal form, and for A_{2} it may be convenient to use the Jordan-Chevalley decomposition.]

- (b)] Let $A \in g l(2, \mathbb{R})$ be such that

$$
\exp (A t)=e^{-t} P_{1}+e^{4 t} P_{2}
$$

where

$$
P_{1}=\left(\begin{array}{rr}
\frac{3}{5} & -\frac{3}{5} \\
-\frac{2}{5} & \frac{2}{5}
\end{array}\right) \text { and } P_{2}=\left(\begin{array}{cc}
\frac{2}{5} & \frac{3}{5} \\
\frac{2}{5} & \frac{3}{5}
\end{array}\right) .
$$

(i) Discuss the relationship between $\operatorname{ker} P_{1}$ and A.
(ii) Explain why $P_{1} P_{2}=P_{2} P_{1}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
(iii) Calculate A.

[^0]
[^0]: version February 15, 2009

