
M2AA1 Differential Equations
Exercise sheet 1 answers

1. Flow: Φt : R→ R, Φt(x) = e−0.5tx. |Φt([a, b])| = |e−0.5t[a, b]| < |[a, b]| if t > 0.

2. General answer Φt(x) = exp(tL)x. If you work this out (either by using Taylor expansion of exp, or by
solving ODE by different method) , you find that exp(tL) is equal to

(a)
(
et sinh(t)
0 e−t

)
, (b)

(
et tet

0 et

)
, (c)

(
cos(at) sin(at)
− sin(at) cos(at)

)
.

3. (a) We note that A = PJP−1 where

J =
(
−6 0

0 4

)
, P =

1
2

(
3 −1
−1 1

)
.

Note that the columns of P represent the eigenvectors of A. Thus

exp(A) = P exp(J)P−1 = P

(
e−6 0

0 e4

)
P−1 =

1
2

(
3e−6 − e4 −3e4 + 3e−6

e4 − e−6 −e−6 + 3e4

)
(b) We note that A = PJP−1 where

J =
(
−6 0

0 4

)
, P =

1
8

(
1 −1
0 8

)
.

Thus

exp(A) = P exp(J)P−1 = P

(
e−7 0

0 e

)
P−1 =

(
e−7 −e+e−7

8
0 e

)
.

4. The eigenvalues of L are λ1 = −1, λ2 = 2, λ3 = 3 and the corresponding eigenvectors are (respectively)

v1 =

 −1
0
1

 , v2 =

 2
−3

1

 , v3 =

 3
0
1

 .

Let P1 denote the projection to the line 〈v1〉 along the plane 〈v2,v3〉 with analogous definitions of projections
P2 and P3 to 〈v2〉 and 〈v3〉, so that any x ∈ R3 can be written (uniquely) as x = P1x + P2x + P3x. Let
xi := Pix, then the corresponding solution of the ODE is

x(t) =
3∑
i=1

eλitPix.

To work out the projections Pi we use the general expression given in the course notes (see also problem sheet
2, question 4). We derive in detail the projection P1. Note that P1 is defined by P 2

1 = P1 and specification
of kernel and range. P1 must be so that kerP1 = 〈v2,v3〉 and of course rangeP1 = 〈v1〉. Let A be defined a
matrix whose columns form a basis of the range of P1, so here A = v1. Let B be defined as a matrix whose
columns form a basis of the orthogonal complement of the kernel of the projection. The latter basis can for
instance be chosen as

(kerP1)⊥ = 〈v2,v3〉⊥ = 〈

 −3
1
9

〉,
so B may be chosen as

 −3
1
9

. Then, as BTA = 12, we obtain

P1 = A(BTA)−1BT =
1
12

 −1
0
1

( −3 1 9
)

=
1
12

 3 −1 −9
0 0 0
−3 1 9

 .
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Expressions for P2 and P3 can be obtained in a similar way, and we obtain

exp(tL) = e−tP1 + e2tP2 + e3tP3

= e−t

 1
4 − 1

12 −3
4

0 0 0
−1

4
1
12

3
4

+ e2t

 0 −2
3 0

0 1 0
0 −1

3 0

+ e3t

 3
4

3
4

3
4

0 0 0
1
4

1
4

1
4


=

 3
4e

3t + 1
4e
−t 3

4e
3t − 2

3e
2t − 1

12e
−t 3

4e
3t − 3

4e
−t

0 e2t 0
−1

4e
−t + 1

4e
3t 1

4e
3t − 1

3e
2t + 1

12e
−t 3

4e
−t + 1

4e
3t



Solution curves through the phase space points are obtained by direct application of the flow. Please note
the relationship to the decomposition of the initial condition vector into eigenvectors of L. 1

1
1

 = 7
12v1 − 1

3v2 + 3
4v3 and exp(Lt)

 1
1
1

 =

 −(7/12)e−t + (9/4)e3t − (2/3)e2t

e2t

(3/4)e3t + (7/12)e−t − (1/3)e2t)


 −2

0
2

 = 2v1 and exp(Lt)

 −2
0
2

 =

 −2e−t

0
2e−t


 5
−3

2

 = v2 + v3 and exp(Lt)

 5
−3

2

 =

 3e3t + 2e2t

−3e2t

e3t + e2t

 .

The first is neither on Eu nor on Es, the second is on Es and the third on Eu.

5. (a) Eu =
〈(

1
0

)〉
, Es =

〈(
1
−2

)〉
, Ec = 0. (b) Eu = R2, Ec = 0, Es = 0. (c) Ec = R2, Eu = 0,

Es = 0.

6. (a) Use binomial formula and commutation A with B to obtain

exp(A+B) =
∞∑
k=0

(A+B)k

k!
=
∞∑
k=0

k∑
`=0

Ak−`B`

(k − `)!`!
=

( ∞∑
k=0

Ak

k!

)
·

( ∞∑
`=0

B`

`!

)
.

(b) follows directly from (a), with B = −A.

(c) Follows from the fact that (BAB−1)k = BAkB−1.

(d) If Av = λv then Akv = λkv and exp(A)v =
∑∞

k=0
Akv
k! =

∑∞
k=0

λk

k! v = exp(λ)v.

7. For example A =
(

1 0
0 −1

)
and B =

(
0 −1
1 0

)
we have exp(A) =

(
e1 0
0 e−1

)
and exp(B) =(

cos(1) − sin(1)
sin(1) cos(1)

)
so that

exp(A) exp(B) =
(

e1 cos(1) −e1 sin(1)
e−1 sin(1) e−1 cos(1)

)
6= exp(B) exp(A) =

(
e1 cos(1) −e−1 sin(1)
e1 sin(1) e−1 cos(1)

)
.

8. The solutions of the ODE dx/dt = Ax with ”initial” condition x(0) = y take the form x(t) = exp(tA)y. To
obtain all possible solutions we can vary y ∈ Rm, moreover, since the flow is linear, if {e1, . . . , em} is a basis of
Rm then the solution space is a linear vector space with basis {exp(tA)e1, . . . , exp(tA)em}, or in other words
each solution x(t) can be written as a linear combination of these basis vectors: x(t) =

∑m
i=1 yi exp(At)ei.

Thus the space of solutions is an m-dimensional (real) linear vector space.
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9. We note that the norm
||A|| = sup

x∈Rm\{0}

|Ax|
|x|

.

In the case of distinct eigenvalues, it is equal to the absolute value of the eigenvalue with largest modulus
(absolute value). If not, we can bound the norm in other ways. Let a be the absolute value of the matrix
entry Aij with largest modulus and X denote the absolute value of the largest vector entry xi of x, then

|Ax| =

√√√√ m∑
i=1

(
m∑
j=1

Aijxj)2 ≤ a

√√√√ m∑
i=1

(mX)2 = am3/2X.

As |x| ≥ X we thus obtain that
|Ax|
|x|
≤ am3/2 <∞.

Hence, a matrix T ∈ gl(m,R) (an m×m matrix with real entries) is a bounded linear map: ||T || <∞.

Then also ||T k|| ≤ ||T ||||T k−1|| ≤ . . . ≤ ||T ||k. Hence || exp(T )|| ≤ exp(||T ||).
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