M2AA1 Differential Equations
Exercise sheet 1

1.

Calculate the flow ®! of the ODE & = —0.5z with # € R and show the image of any subinterval of the real
line under the forward flow (¢ > 0) is another smaller subinterval.

. Derive the flow ®! for the linear ODE x = Lx with x € R? for the following choices of the matrix L :

(@L:(é _11>(b)L:<(1) 1>(C)L:<_Oa g>witha7é0

. Calculate exp(A) for the following choices of the matrix A :

(@A:(‘lé _1g> (b)A:<_g ‘i)

Hint: if A can be diagonalized, it may be useful to find the (linear) coordinate transformation that achieves
this diagonalization and use the property mentioned in Question 6(b).
Suggestion: you can verify your answers with Maple.

. Derive the flow for the linear ODE x = Lx with x € R3 and

21 3
L= 0 2 0
100

Find the solution curves through the phase space points

1 -2 5
1], 01, -3
1 2 2

. For the linear ODEs in questions 2 and 4, find the stable, unstable and centre subspaces E*, E* and E*°.

. Use the definition of the matrix exponential to demonstrate that the following properties hold (with A, B €

gl(m,R)):
(a) If AB = BA then exp(A)exp(B) = exp(A + B) and Bexp(A) = exp(A)B.
(b) exp(—A)exp(A) = I (the identity matrix).
(c) If B is invertible, then exp(BAB™1) = Bexp(A)B~L.
(d) If v is an eigenvector of A with eigenvalue A, then exp(A)v = exp(A)v.

With reference to Question 6(a) above: find an example of a pair of matrices A, B for which exp(A) exp(B) #
exp(A + B).

. Show that the solution space of an autonomous first order ODE in R™ is an m-dimensional linear vector

space. Argue that the solution space of a second order ODE in R is a two-dimensional vector space (compare
this with what you know about the solutions of a damped harmonic oscillator).

. Let the norm of a linear map A : R™ — R be defined as

Ax
A= sup X
xeRm\{0} |X|

where the norm |x| denotes the length of a vector x € R™. We say that A is bounded if ||A]| < co.

Show that the linear map from R™ to R induced by multiplication by a matrix T € gl(m,R) (an m x m
matrix with real entries) is a bounded linear map.

Prove that exp(T') is a bounded linear map if T € gl(m,R). (Hint: find an upper bound of the norm of 7" in
terms of its coefficient with largest modulus, and use this to find an upper bound for the norm of exp(7').)
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