M2AA1 Differential Equations Exercise sheet 1

(

- 1. Calculate the flow Φ^t of the ODE $\dot{x} = -0.5x$ with $x \in \mathbb{R}$ and show the image of any subinterval of the real line under the forward flow (t > 0) is another <u>smaller</u> subinterval.
- 2. Derive the flow Φ^t for the linear ODE $\dot{\mathbf{x}} = L\mathbf{x}$ with $\mathbf{x} \in \mathbb{R}^2$ for the following choices of the matrix L:

(a)
$$L = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$$
 (b) $L = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ (c) $L = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}$ with $a \neq 0$

3. Calculate $\exp(A)$ for the following choices of the matrix A:

a)
$$A = \begin{pmatrix} -11 & -15 \\ 5 & 9 \end{pmatrix}$$
 (b) $A = \begin{pmatrix} -7 & -1 \\ 0 & 1 \end{pmatrix}$

Hint: if A can be diagonalized, it may be useful to find the (linear) coordinate transformation that achieves this diagonalization and use the property mentioned in Question 6(b). Suggestion: you can verify your answers with Maple.

4. Derive the flow for the linear ODE $\dot{\mathbf{x}} = L\mathbf{x}$ with $\mathbf{x} \in \mathbb{R}^3$ and

$$L = \left(\begin{array}{rrr} 2 & 1 & 3 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{array} \right).$$

Find the solution curves through the phase space points

$$\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} -2\\0\\2 \end{pmatrix}, \begin{pmatrix} 5\\-3\\2 \end{pmatrix}.$$

- 5. For the linear ODEs in questions 2 and 4, find the stable, unstable and centre subspaces E^s , E^u and E^c .
- 6. Use the definition of the matrix exponential to demonstrate that the following properties hold (with $A, B \in gl(m, \mathbb{R})$):
 - (a) If AB = BA then $\exp(A) \exp(B) = \exp(A + B)$ and $B \exp(A) = \exp(A)B$.
 - (b) $\exp(-A)\exp(A) = I$ (the identity matrix).
 - (c) If B is invertible, then $\exp(BAB^{-1}) = B\exp(A)B^{-1}$.
 - (d) If v is an eigenvector of A with eigenvalue λ , then $\exp(A)v = \exp(\lambda)v$.
- 7. With reference to Question 6(a) above: find an example of a pair of matrices A, B for which $\exp(A) \exp(B) \neq \exp(A + B)$.
- 8. Show that the solution space of an autonomous first order ODE in \mathbb{R}^m is an *m*-dimensional linear vector space. Argue that the solution space of a second order ODE in \mathbb{R} is a two-dimensional vector space (compare this with what you know about the solutions of a damped harmonic oscillator).
- 9. Let the norm of a linear map $A:\mathbb{R}^m\to\mathbb{R}^m$ be defined as

$$||A|| = \sup_{\mathbf{x} \in \mathbb{R}^m \setminus \{0\}} \frac{|A\mathbf{x}|}{|\mathbf{x}|},$$

where the norm $|\mathbf{x}|$ denotes the length of a vector $\mathbf{x} \in \mathbb{R}^m$. We say that A is bounded if $||A|| < \infty$.

Show that the linear map from \mathbb{R}^m to \mathbb{R}^m induced by multiplication by a matrix $T \in gl(m, \mathbb{R})$ (an $m \times m$ matrix with real entries) is a bounded linear map.

Prove that $\exp(T)$ is a bounded linear map if $T \in gl(m, \mathbb{R})$. (Hint: find an upper bound of the norm of T in terms of its coefficient with largest modulus, and use this to find an upper bound for the norm of $\exp(T)$.)

version January 14, 2009