M2AA1 Differential Equations

Exercise sheet 1

1. Calculate the flow Φ^{t} of the $\operatorname{ODE} \dot{x}=-0.5 x$ with $x \in \mathbb{R}$ and show the image of any subinterval of the real line under the forward flow $(t>0)$ is another smaller subinterval.
2. Derive the flow Φ^{t} for the linear ODE $\dot{\mathbf{x}}=L \mathbf{x}$ with $\mathbf{x} \in \mathbb{R}^{2}$ for the following choices of the matrix L :
(a) $L=\left(\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right)$
(b) $L=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
(c) $L=\left(\begin{array}{cc}0 & a \\ -a & 0\end{array}\right)$ with $a \neq 0$
3. Calculate $\exp (A)$ for the following choices of the matrix A :
(a) $A=\left(\begin{array}{rr}-11 & -15 \\ 5 & 9\end{array}\right)$ (b) $A=\left(\begin{array}{rr}-7 & -1 \\ 0 & 1\end{array}\right)$

Hint: if A can be diagonalized, it may be useful to find the (linear) coordinate transformation that achieves this diagonalization and use the property mentioned in Question 6(b).
Suggestion: you can verify your answers with Maple.
4. Derive the flow for the linear ODE $\dot{\mathbf{x}}=L \mathbf{x}$ with $\mathbf{x} \in \mathbb{R}^{3}$ and

$$
L=\left(\begin{array}{lll}
2 & 1 & 3 \\
0 & 2 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

Find the solution curves through the phase space points

$$
\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad\left(\begin{array}{r}
-2 \\
0 \\
2
\end{array}\right), \quad\left(\begin{array}{r}
5 \\
-3 \\
2
\end{array}\right) .
$$

5. For the linear ODEs in questions 2 and 4, find the stable, unstable and centre subspaces E^{s}, E^{u} and E^{c}.
6. Use the definition of the matrix exponential to demonstrate that the following properties hold (with $A, B \in$ $g l(m, \mathbb{R}))$:
(a) If $A B=B A$ then $\exp (A) \exp (B)=\exp (A+B)$ and $B \exp (A)=\exp (A) B$.
(b) $\exp (-A) \exp (A)=I$ (the identity matrix).
(c) If B is invertible, then $\exp \left(B A B^{-1}\right)=B \exp (A) B^{-1}$.
(d) If v is an eigenvector of A with eigenvalue λ, then $\exp (A) v=\exp (\lambda) v$.
7. With reference to Question 6(a) above: find an example of a pair of matrices A, B for which $\exp (A) \exp (B) \neq$ $\exp (A+B)$.
8. Show that the solution space of an autonomous first order ODE in \mathbb{R}^{m} is an m-dimensional linear vector space. Argue that the solution space of a second order ODE in \mathbb{R} is a two-dimensional vector space (compare this with what you know about the solutions of a damped harmonic oscillator).
9. Let the norm of a linear map $A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be defined as

$$
\|A\|=\sup _{\mathbf{x} \in \mathbb{R}^{m} \backslash\{0\}} \frac{|A \mathbf{x}|}{|\mathbf{x}|},
$$

where the norm $|\mathbf{x}|$ denotes the length of a vector $\mathbf{x} \in \mathbb{R}^{m}$. We say that A is bounded if $\|A\|<\infty$.
Show that the linear map from \mathbb{R}^{m} to \mathbb{R}^{m} induced by multiplication by a matrix $T \in g l(m, \mathbb{R})$ (an $m \times m$ matrix with real entries) is a bounded linear map.
Prove that $\exp (T)$ is a bounded linear map if $T \in g l(m, \mathbb{R})$. (Hint: find an upper bound of the norm of T in terms of its coefficient with largest modulus, and use this to find an upper bound for the norm of $\exp (T)$.)

[^0]
[^0]: version January 14, 2009

