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1. (a) Consider the linear ODE
dx

dt
= Ax, (1)

with A ∈ gl(m, R) (an m × m matrix with real entries) and x ∈ R
m.

(i) Show that the ODE (1) with initial value x(0) = y has the unique solution

x(t) = exp(At)y.

[Hint: First show from first principles that d

dt
exp(At) = A exp(At).]

(ii) Show that, for each value of t ∈ R, the map exp(At) : R
m → R

m is linear and

invertible.

(b) Give the definition of a contraction on a complete metric space and prove the following

theorem:

Theorem: Let X be a complete metric space, and F : X → X be a contraction. Then

F has a unique fixed point.

[You need not give the definition of a Cauchy sequence.]

(c) (i) Let the map T be defined by

T (u(t)) = u0 +

∫

t

t0

f(u(s))ds, (2)

where u0 ∈ R
m, f : R

m → R
m is Lipschitz and u : R → R

m is continuous.

Show that fixed points of T correspond to solutions of the ODE

du(t)

dt
= f(u(t)), (3)

with initial value u(t0) = u0.

(ii) The map T defined in (2) is a contraction on a suitable complete metric space of

continuous functions u : [−a, a] → R
m with u(t0) = u0 and a 6= 0 sufficiently small.

Show how this fact may be used to prove local existence and uniqueness of solutions

for the ODE (3). [Please only answer the question as stated. You must NOT prove

that T is a contraction and need NOT provide any further details about a or the

complete metric space involved.]



2. (a) Let

A1 =

(

−4 5

−4 4

)

, A2 =

(

6 1

−4 10

)

.

(i) Give the real Jordan normal form and Jordan-Chevalley decomposition of Ai, for

i = 1, 2. [Note: You need not derive the coordinate transformation that transforms

the matrices into Jordan normal form.]

(ii) Calculate the flow Φt : R
2 → R

2 of the ODE

dx

dt
= Aix, for i = 1, 2

and sketch the phase portraits. [Hint: In the calculation of the flow, for A1 it may

be convenient to use the fact that the matrix is conjugate to its Jordan normal form,

and for A2 it may be convenient to use the Jordan-Chevalley decomposition.]

(b) Let A ∈ gl(2, R) be such that

exp(At) = e−tP1 + e4tP2,

where

P1 =

(

3

5
−3

5

−2

5

2

5

)

and P2 =

(

2

5

3

5

2

5

3

5

)

.

(i) Discuss the relationship between ker P1 and A.

(ii) Explain why P1P2 = P2P1 =

(

0 0

0 0

)

.

(iii) Calculate A.



3. Consider the equations of motion for a nonlinear oscillator with friction

d2x

dt2
= −κx − x3 − µ

dx

dt
, (4)

where x ∈ R, µ is a non-negative parameter (friction constant) and κ is a constant that can

be either positive or negative (elasticity constant).

(a) Write the equation (4) as a first order ODE on the plane R
2.

(b) (i) Show that the energy of this oscillator

E =
1

2

(

dx

dt

)2

+
κ

2
x2 +

1

4
x4

is a Lyapunov function of (4).

(ii) Sketch the phase portrait and describe all ω- and α-limit sets of this system in the

case that:

· κ = 1 and µ = 0,

· κ = −1 and µ > 0.

You may use the following sketches of the contours (E =constant) of the Lyapunov

function E when κ = 1 and κ = −1:
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(c) (i) Analyze the bifurcation of equilibria in the system (4) as κ increases through κ = 0.

Sketch the bifurcation diagram (bifurcation parameter κ versus x).

(ii) Discuss whether (and if so, how) the bifurcation diagram in (ii) changes if one adds

a term εx7 (with |ε| being very small) to the right-hand-side of (4).

(d) Equilibria can be viewed as the intersection of nullclines of the planar vector field derived

in (a). Recall that the nullclines are defined as curves on which one of the components

of the vector field is equal to zero.

Show for general planar vector fields f : R
2 → R

2, that the derivative of the vector field

Df(x0) at an equilibrium x0 is invertible if and only if the nullclines have a transverse

intersection at x0.

Discuss this relationship in the context of conditions for persistence of equilibria under

small perturbations.



4. Consider the following model of the chemical reaction between two substances whose

concentrations are denoted by x and y, respectively:

dx

dt
= a − x − 4xy

1 + x2
,

dy

dt
= x

(

1 − y

1 + x2

)

.

Here a is a positive parameter. Note also that as x and y represent concentrations, we are

only interested in x, y ≥ 0. The model serves to illustrate that chemical reactions may yield

asymptotic solutions that oscillate instead of being stationary.

(a) (i) Show that there is a unique equilibrium and that at this equilibrium the derivative

of the vector field (Jacobian) is equal to

1

25 + a2

(

−125 + 3a2 −20a

2a2 −5a

)

.

(ii) Show that the equilibrium is asymptotically stable if a < 5

6
(1 +

√
61) and

asymptotically unstable if a > 5

6
(1 +

√
61).

[You may apply the derivative test without proof. Hint: Recall that the eigenvalues

of a 2 × 2 matrix A are given by λ± = tr(A)/2 ±
√

(tr(A)/2)2 − det(A), where

tr(A) denotes the trace of A and det(A) its determinant.]

(b) Show that

(i) The quadrant {(x, y) | x ≥ 0, y ≥ 0} is positive flow-invariant.

(ii) All ω-limit sets of the flow are contained in the region

Ba := {(x, y) | a ≥ x ≥ 0, 1 + a2 ≥ y ≥ 0}.

[Hint: consider the flow through the boundary of Bc for all c ≥ a.]

(iii) Apply the Poincaré-Bendixson Theorem to show that there exists a periodic solution

in Ba if a > 5

6
(1+

√
61), and that this periodic solution must encircle the equilibrium.

(c) Suppose that the equilibrium is the unique ω-limit set of the ODE when a < 5

6
(1+

√
61).

What stability property would you expect for the equilibrium at a = 5

6
(1 +

√
61)?

Motivate your answer.
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