Inner products on \mathbb{C}^{m}

On the complex vector space \mathbb{C}^{m}, an inner product is a positive definite conjugate-symmetric sesquilinear (or Hermitian) form $\langle\cdot, \cdot\rangle: \mathbb{C}^{m} \times \mathbb{C}^{m} \rightarrow \mathbb{C}$:

- positive definite $\langle\mathbf{z}, \mathbf{z}\rangle>0$ if $\mathbf{z} \neq 0$.
- conjugate-symmetric $\langle\mathbf{y}, \mathbf{z}\rangle=\overline{\langle\mathbf{z}, \mathbf{y}\rangle}$.
- sesquilinear (linear in first component and anti-linear in second component) $\langle a \mathbf{y}, b \mathbf{z}\rangle=a\langle\mathbf{y}, b \mathbf{z}\rangle=\bar{b}\langle a \mathbf{y}, \mathbf{z}\rangle, a, b \in \mathbb{C}$.

Some remarks:

- We note that if $\mathbf{y}, \mathbf{z} \in \mathbb{R}^{m}$, then $\langle\mathbf{y}, \mathbf{z}\rangle$ satisfies the axioms of an inner product on a real vector space (positive-definite symmetric bilinear form).
- The standard (usual) inner product on \mathbb{C}^{m} is defined as $\langle\mathbf{y}, \mathbf{z}\rangle:=\sum_{i=1}^{m} y_{i} \cdot \overline{z_{i}}$ where $\mathbf{y}=\left(y_{1} \ldots, y_{m}\right)^{T}$ and $\mathbf{z}=\left(z_{1} \ldots, z_{m}\right)^{T}$. Then $\langle\mathbf{z}, \mathbf{z}\rangle=\sum_{i=1}^{m}\left|z_{i}\right|^{2}$. Clearly, if $\mathbf{y}, \mathbf{z} \in \mathbb{R}^{m}$ then $\langle\mathbf{y}, \mathbf{z}\rangle$ is also the standard inner product on \mathbb{R}^{m}.
- If we identify \mathbb{C}^{m} with $\mathbb{R}^{2 m}$ by $\left(a_{1}+i b_{1}, \ldots, a_{m}+i b_{m}\right) \simeq\left(a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{m}\right)$ with $a_{i}, b_{i} \in \mathbb{R}$, then the real part of the standard inner product on \mathbb{C}^{m} is identical to the corresponding standard real inner product on $\mathbb{R}^{2 m}: \operatorname{Re}\left(\langle\mathbf{y}, \mathbf{z}\rangle_{\mathbb{C}^{m}}\right)=\langle\mathbf{y}, \mathbf{z}\rangle_{\mathbb{R}^{2 m}}$.

