Inner products on \mathbb{C}^m

On the complex vector space \mathbb{C}^m , an inner product is a positive definite conjugate-symmetric sesquilinear (or *Hermitian*) form $\langle \cdot, \cdot \rangle : \mathbb{C}^m \times \mathbb{C}^m \to \mathbb{C}$:

- positive definite $\langle \mathbf{z}, \mathbf{z} \rangle > 0$ if $\mathbf{z} \neq 0$.
- conjugate-symmetric $\langle \mathbf{y}, \mathbf{z} \rangle = \overline{\langle \mathbf{z}, \mathbf{y} \rangle}$.
- <u>sesquilinear</u> (linear in first component and anti-linear in second component) $\overline{\langle a\mathbf{y}, b\mathbf{z} \rangle} = a \langle \mathbf{y}, b\mathbf{z} \rangle = \overline{b} \langle a\mathbf{y}, \mathbf{z} \rangle, a, b \in \mathbb{C}.$

Some remarks:

- We note that if $\mathbf{y}, \mathbf{z} \in \mathbb{R}^m$, then $\langle \mathbf{y}, \mathbf{z} \rangle$ satisfies the axioms of an inner product on a real vector space (positive-definite symmetric bilinear form).
- The standard (usual) inner product on \mathbb{C}^m is defined as $\langle \mathbf{y}, \mathbf{z} \rangle := \sum_{i=1}^m y_i \cdot \overline{z_i}$ where $\mathbf{y} = (y_1 \dots, y_m)^T$ and $\mathbf{z} = (z_1 \dots, z_m)^T$. Then $\langle \mathbf{z}, \mathbf{z} \rangle = \sum_{i=1}^m |z_i|^2$. Clearly, if $\mathbf{y}, \mathbf{z} \in \mathbb{R}^m$ then $\langle \mathbf{y}, \mathbf{z} \rangle$ is also the standard inner product on \mathbb{R}^m .
- If we identify \mathbb{C}^m with \mathbb{R}^{2m} by $(a_1 + ib_1, \ldots, a_m + ib_m) \simeq (a_1, \ldots, a_m, b_1, \ldots, b_m)$ with $a_i, b_i \in \mathbb{R}$, then the real part of the standard inner product on \mathbb{C}^m is identical to the corresponding standard real inner product on \mathbb{R}^{2m} : $\operatorname{Re}(\langle \mathbf{y}, \mathbf{z} \rangle_{\mathbb{C}^m}) = \langle \mathbf{y}, \mathbf{z} \rangle_{\mathbb{R}^{2m}}$.