
Chapter 5

The flow near an equilibrium

It is important to study the flow of an ODE. In the absence of general methods that give direct
global insight (this absence lies at the basis of what now is known as ”chaotic” dynamics), it has
proven to be a rather succesful strategy to first understand the nature of a flow in small regions
of the phase space and then use this knowledge to obtain more insight into global properties of
flows.

For any explicitly given ODE it is typically very hard (if not impossible) to obtain a full
understanding of the flow at every level of detail. It may be interesting to point out in this
context, that one of Hilbert’s 100 mathematical challenges for the 20th century (number 16)
concerns the question ”What is the maximum number of (isolated) periodic solutions that an
ODE with polynomial vector field can have (as function of the dimension of phase space and
degree of the polynomial)?”. Despite lots of effort by many prominent mathematicians, this
problem remains unsolved to date.

A more succesful approach (that is at the basis of what is now known as dynamical systems
theory) concerns the less ambitious aim to understand flows of typical ODEs. This has been a
very fruitful and successful approach, that has relied very much on understanding typical local
geometric properties of flows.

In this chapter we focus on understanding the nature of flows near equilibria.

5.1 Linear approximation

We consider an ODE
dx

dt
= f(x), x ∈ Rm, (5.1.1)

with equilibirum x0, i.e. f(x0) = 0. If f is differentiable (which we will assume here), then
we may want to try to approximate f by its first order Taylor expansion near x0. We consider
points x + x0 with |x| small, then using the fact that f(x0) = 0 we find

d(x0 + x)

dt
= f(x0 + x) = Df(x0)x +O(|x|2),
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from which it follows that the linear ODE

dx

dt
= Df(x0)x,

serves as the first order or linear approximation of the ODE (5.1.1) near its equilbrium x0. As
this is a linear ODE, we know all about its flow (see Chapter 2). In fact, the first order (linear)
approximation of the flow is exactly the flow of the linear approximation of the vector field (see
also exercise on problem sheet):

DΦt(x0) = exp(Df(x0)t).

The main question is now to what extent the properties of the linear approximation imply
properties for the flow of the nonlinear ODE in the neighbourhood of the equilibrium.

Definition 5.1.1.

• We call A ∈ gl(m,R) hyperbolic if all its eigenvalues lie off the imaginary axis (i.e. have
non-zero real part)

• We call an equilibrium x0 hyperbolic if Df(x0) is hyperbolic.

This definition is important, since it turns out that typically matrices are hyperbolic in the
following sense:

Proposition 5.1.2.

(a) Suppose that A ∈ gl(m,R) is not hyperbolic. Then there exists δ > 0 such that A + εI
(where I denotes the identity matrix) is hyperbolic for all ε such that |ε| ≤ δ.

(b) Suppose that A ∈ gl(m,R) is hyperbolic. Then there exists δ > 0 such that A + B is
hyperbolic for all B ∈ gl(m,R) satisfying |B| ≤ δ.

Proof.

(a) If A is not hyperbolic, then some of the eigenvalues of A lie on the imaginary axis. There
are finitely many other eigenvalues that do not lie on the imaginary axis and (since these
are only finitely many) there exists a δ > 0 such that the absolute value of the real part
of these eigenvalues is always larger than δ. Now observe that if λ is an eigenvalue of A
then λ + ε is an eigenvalue of A + εI (with the same eigenvector). Hence, by the choice
of δ, if 0 < |ε| ≤ δ then all eigenvalues of A+ εI lie off the imaginary axis.

(b) If the matrix A is hyperbolic then there exists a constant δ > 0 such that all eigenvalues
of A have a real part with absolute value greater or equal to δ. From the definition of
matrix norm, and the triangle inequality it then follows that with |B| ≤ δ the smallest
real part of any eigenvalue of the matrix A + B will differ by a magnitude less or equal
than δ from the real part of the eigenvalues of A, so that A+B cannot have any eigenvalue
on the imaginary axis.
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Another important point to address is whether equilibria are typically isolated in the phase
space Rm, or not.

Example 5.1.3. The ODE {
ẋ = (x− y)2

ẏ = y − x

has a line of equilibria, so the equilibria of this ODE are not isolated.

The following proposition asserts that typically equilibria arise isolated in the phase space.

Proposition 5.1.4. If x0 is an equilibrium of a vector field f and the Jacobian Df(x0) has no
eigenvalue equal to zero (i.e. if Df(x0) is invertible) then x0 is an isolated equilibrium.

Corollary 5.1.5. Typically equilibria of ODEs are isolated.

Proof. Typically the Jacobian of an equilibrium has no zero eigenvalue.

Proof of Proposition 5.1.4. Consider the ODE (5.1.1). We can interpret the equation f(x) = 0
as the intersection of the graph y = f(x) with y = 0 in the (x,y)-space. Now, if f(x0) = 0 and
Df(x0) is invertible, then the tangent spaces to the two graphs y = f(x) and y = 0 are linearly
independent. Namely all tangent vectors to y = 0 are of the form (x, 0) while the tangent vector
to the graph y = f(x) in x0 are of the form (Df(x0)y,y). Hence, Df(x0) is invertible, these
two tangent spaces have trivial intersection (0, 0). So the intersection is transverse. We can
apply the formula for the dimension of transverse intersections of ”surfaces”: if in Rp a surface of
dimension q transversely intersects a surface of dimension r then (locally, near the intersection
point) the intersection is a surface of dimension p− q− r (see problem sheet 3, exercise 8). We
obtain in this case that the dimension is 2m − m − m = 0 (where m denotes the dimension
of the phase space of the ODE). By application of the implicit function theorem, transverse
intersections are persistent under small (smooth) perturbations of the surfaces).

Remark 5.1.6. Formally, the notion of small perturbation needs some agreement on when two
vector fields are close. Without going into further detail, we here assume small in the context
of the so-called (Whitney) smooth topology : two Ck functions (here vector fields) are close if the
functions, and all their partial derivatives (up to order k) are close at all points in the domain
of definition.

Example 5.1.7. The following perturbation (|ε| << 1) of the ODE in Example 5.1.3{
ẋ = (x− y)2

ẏ = y − x+ εx2

has only one (isolated) equilibrium x = y = 0 if ε 6= 0. So the situation.
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5.2 Hyperbolic equilibria

Typically (e.g. if equilibria are hyperbolic) equilibria are isolated in the phase space . The
question remains what the flow is near such an isolated equilibrium? We like to compare it to
the linear approximation of the flow: let x0 be an equilibrium of a flow Φt and y := x − x0,
then this linear approximation is given by y(t) = Dφt(x0))y0 (with y(0) = y0). In particular
if y = 0 then x = x0 and y(t) = 0 ∀t or equivalenty that x(t) = x0 ∀t.

Recall that DΦt(x0) exp(Df(x0)) is Φt is the flow of the vector field f . We consider some
different situations:

1. All eigenvalues of Df(x0) have negative real part. Then, for t > 0 the eigenvalues
of DΦt(x0) have absolute value small than 1. By continuity of the derivative (we assume
that f is C1) it follows that this property extends to some small neighborhood of x0:
all eigenvalues of Df(x) have negative real part if |x − x0| is sufficiently small. Now we
can apply the derivative test. If for all x in a closed ball B(x0, ε) the derivative DΦt(x)
(t > 0) has all eigenvalues inside the unit circle so that Φt (t > 0) is a contraction on
B(x0, ε). Hence, Φt has a unique fixed point in B(x0, ε) and all initial conditions in
this neighbourhood converge exponentially fast to x0 as t → ∞. The equilibrium x0

is asymptotically stable. We call x0 a sink or more generally an attractor. The region
B(x0, ε) is part of the basin of attraction of x0, which is defined as the set of all initial
conditions that converge to x0 as t→∞.

2. All eigenvalues of Df(x0) have positive real part. Then, for t > 0 the eigenvalues of
DΦt(x0) have absolute value greater than 1, and all eigenvalues of DΦt(x) have absolute
value smaller than 1 if |x − x0| is sufficiently small. Now we can apply the derivative
test to obtain that Φt is a contraction if t < 0 (!). Hence, Φt has a unique fixed point in
B(x0, ε) and all initial conditions in this neighbourhood converge exponentially fast to x0

as t→ −∞: the equilibrium x0 is asymptotically unstable. We call x0 a source or more
generally an repeller.

3. All eigenvalues of Df(x0) have nonzero real part and there exist eigenvalues
with positive as well as negative real part. This situation is more complicated and
we discuss the situation in more detail in the remainder of this section.

Example 5.2.1. Consider the linear ODE in the plane{
ẋ = x
ẏ = −y.

The origin 0 is an equilibrium and Df(0) has eigenvalues ±1. We have seen before that there
is a stable subspace Es := {x = 0} for which ∀x ∈ Es and t ≥ 0 we have Φt(x) ∈ Es and
limt→∞Φt(x) = 0, and an unstable subspace Eu := {y = 0} for which ∀x ∈ Eu and t ≤ 0 we
have Φt(x) ∈ Eu and limt→−∞Φt(x) = 0.

In this example we observe mixed behaviour: on Es we have exponential attraction to the
equilibrium and on Eu we have exponential repulsion from the equilibrium. All other initial
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conditions show potentially mixed behaviour between being attracted and repelled from the
equilibrium (and all such solutions go to infinity if t → ±∞). Note that by continuity of the
flow (for any finite t), if we start very close to the stable subspace, for a very long time it looks
as if the solution tends to the equilibrium. Only when it comes very close the equilibrium the
orbit suddenly escapes along the direction of the unstable subspace. If we measure the time
it takes to go from (x, y0) to the line x = x0 then this time tends to infinity if x → 0. The
question is whether this kind of behavior is observed also in the case of nonlinear ODEs.

Theorem 5.2.2 (Hartman-Grobman). There exists a continuous change of coordinates such
that in the neighbourhood of a hyperbolic equilibrium the flow becomes linear in this neighbour-
hood.

In other words, there exists T invertible and continuous such that such that T ◦Φt ◦ T−1 =
DΦt(x0) near the equilibrium x0. We do not prove this theorem here, but it can be proven
using the contraction mapping theorem.

Example 5.2.3. Consider the planar ODE{
ẋ = x+ y2

ẏ = −y. (5.2.1)

which has the origin as an equilibrium point. The derivative Df(0) =

(
1 0
0 −1

)
satisfies the

condition of the Hartman-Grobman theorem and thus we know that near the equilibrium point
one can choose coordinates such that the flows is that of the linear vector field Df(0) (which
is determined by the flow on the one-dimensional stable and unstable subspaces).

In this example we can actually solve the initial value problem for the ODE (5.2.1) with
(x(0), y(0)) = (x0, y0). Namely

ẏ = −y ⇒ y(t) = y0e
−t,

ẋ = x+ y2 = x+ y2
0e
−2t ⇒ x(t) = (x0 +

1

3
y2

0)et − 1

3
y2

0e
−2t.

We see that if y0 = 0 we have y(t) = 0 ∀t, so that x-axis is flow-invariant. (Note that this
can also be seen directly from the ODE (5.2.1): if y = 0 we have ẏ = 0 and ẋ = x. Similarly,
but less obviously, if the initial conditions satisfy x0 = −1

3
y2

0 then it turns out from the explicit
expression of the solution (x(t) = −1

3
y2

0e
−2t and y(t) = y0e

−t) that x(t) = −1
3
y(t)2 ∀t.

We thus found two flow-invariant curves: y = 0 and x = −1
3
y2. Moreover, the behaviour on

each of these curves is rather similar then on the stable and unstable subspaces of the linear
ODE ẋ = x, ẏ = −y. Namely, when y0 = 0 we have x(t) = x0e

t and the flow is exponentially
expanding and limt→−∞ x(t) = 0. If x0 = −1

3
y2

0 we observe that

|x(t)| =
√
x(t)2 + y(t)2 = |y0|e−t

√
1

9
y2

0e
−2t + 1 ≤ Ce−t t ≥ 0.
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for some constant C (e.g. C = |y0|
√

1
9
y2

0 + 1). This means that on the curve x = −1
3
y2 the

flow is exponentially contracting and all initial conditions on this line flow to the equilibrium
as t→∞.

The flow on these invariant curves thus shows similarities to the flow on stable and unstable
subspaces of linear ODEs. They are known as stable and unstable manifolds and are the
nonlinear equivalents of the stable and unstable subspaces of equilibria of linear ODEs. We
note that we here use the technical term manifold, which you should interpret as ”smooth
surface” (which is here in fact a curve).

In fact, in the spirit of the Hartman-Grobman theorem, in this (very special!) case there is
a smooth global change of coordinates such that the flow becomes linear. Namely, if

u = x+
1

3
y2, v = y,

(note that this is an invertible coordinate transformation) the unstable manifold corresponds
to v = 0 and the stable manifold to u = 0. In terms of these coordinates the ODE has the form{

u̇ = ẋ+ 2
3
yẏ = x+ 1

3
y2 = u

v̇ = ẏ = −y = −v.

We now formalise the notion of stable and unstable manifold that we introduced in the
above example.

Definition 5.2.4. Let x0 be an equilibrium of an (autonomous) ODE, then the stable manifold
of x0 is defined as

W s(x0) = {x | lim
t→∞

Φt(x) = x0}.

Similarly the unstable manifold is defined as the set

W u(x0) = {x | lim
t→−∞

Φt(x) = x0}.

We have the following theorem (which can be considered as a corollary of he Hartman-
Grobman Theorem):

Theorem 5.2.5. If x0 is a hyperbolic equilibrium of an ODE ẋ = f(x), then there exist stable
and unstable manifolds W s(x0) and W u(x0) that are tangent to the stable and unstable subspaces
Es and Eu of the linear ODE ẏ = Df(x0)y (with y = x − x0) so that under the flow of the
ODE every point in W s(x0) converges with exponential speed to x0 as t → ∞ and every point
in W u(x0) converges with exponential speed to x0 as t→ −infty.

We do not prove the existence or smoothness of these manifolds here, but this result can be
proven using the Contraction Mapping Theorem.


