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1. (i) Give a brief outline of the Eulerian and Lagrangian descriptions of unsteady one-

dimensional fluid motion and explain how the material derivative D/Dt is defined.

(ii) Fluid flows through a pipe with constant rectangular cross-sectional area A. The fluid

velocity at a location x along the pipe is denoted by u(x, t) and the fluid density by

ρ(x, t). By concentrating on the fluid motion in a fixed region a ≤ x ≤ b, use the
concepts of mass and momentum flux to derive the governing equations

∂ρ

∂t
+
∂

∂x
(ρu) = 0,

∂

∂t
(ρu) +

∂

∂x
(ρu2) = −

∂p

∂x
.

You may assume that the only force acting on the fluid is due to the pressure p(x, t).

Show that the second of these equations can be written in the alternative form

ρ
Du

Dt
= −
∂p

∂x
.

(iii) Explain how the above equations are modified if, rather than through an enclosed

pipe, the flow is along an open horizontal channel of rectangular cross-section with

constant width, but variable depth h(x, t), and the fluid is of constant density.

2. In an elastic-walled pipe of circular cross-section, the radius r(x, t) and fluid velocity u(x, t)

are governed by the equations

∂

∂t
(r2) +

∂

∂x
(r2u) = 0,

∂u

∂t
+ u
∂u

∂x
= −

2

α2
∂r

∂x
, (1)

where α is a constant.

Show that small perturbations to the rest state u = 0, r = r0 (r0 constant) propagate with

speed c0 = r
1/2
0 /α.

Now consider the steady version of (1), and show that upon integration r satisfies:

Q2 =

(
2

α

)2
r4(E − r),

where Q and E are constants. Interpret the constant Q physically.

Show that Q is a maximum (Qmax, say) when r = 4E/5.

By sketching Q2 versus r, show graphically that, for a given value of Q (< Qmax) there are

two possible values of r. What are the corresponding values of u?

By defining an appropriate Froude number, show that one of these flows is subcritical and

the other supercritical.
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3. The one-dimensional flow of a river of depth h(x, t) can be modelled by the nonlinear

equations

∂h

∂t
+
∂

∂x
(hu) = 0,

∂u

∂t
+ u
∂u

∂x
= −g

∂h

∂x
cosα + g sinα−D0

u2

h
.

Here, α is the slope of the river and the constant D0 is a drag coefficient.

(i) Show that there is a uniform solution with u = u0, h = h0 and u
2
0 = (g sinα/D0)h0.

(ii) Seek small perturbations to this basic state by writing

u = u0 + ũ(x, t), h = h0 + h̃(x, t),

and show that ũ and h̃ satisfy the linearised equations

(
∂

∂t
+ u0

∂

∂x

)

h̃ = −h0
∂ũ

∂x
,

(
∂

∂t
+ u0

∂

∂x

)

ũ = −g
∂h̃

∂x
cosα−D0

u20
h0

(
2ũ

u0
−
h̃

h0

)

.

(iii) Show that, upon elimination of ũ, the perturbation to the depth satisfies

(
∂

∂t
+ u0

∂

∂x

)2
h̃ = c20

∂2h̃

∂x2
− g sinα

(
2

u0

∂h̃

∂t
+ 3
∂h̃

∂x

)

,

where c20 = gh0 cosα.

(iv) Seek wave-like solutions for h̃ proportional to exp [ik(x− c̃t)] , with k real, and derive
the dispersion relation

(

3−
2c̃

u0

)

g sinα + ik
(
(u0 − c̃)

2 − c20
)
= 0.

Consider a solution for c̃, valid for small k, of the form

c̃ = c1 + kc2 + ∙ ∙ ∙ .

Show that c1 = 3u0/2 and find c2.

Deduce that long wavelength disturbances on the river will grow exponentially in time

provided 4D0 < tanα.
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4. Constant-density fluid of depth h flows along an open channel. The governing equations

are
∂(h2)

∂t
+
∂

∂x
(h2u) = 0,

∂u

∂t
+ u
∂u

∂x
= −g

∂h

∂x
.

(i) Show that these equations may be written in the alternative form

(
∂

∂t
+ (u+ c)

∂

∂x

)

(u+ 4c) = 0,

(
∂

∂t
+ (u− c)

∂

∂x

)

(u− 4c) = 0, (1)

where c2 = 1
2
gh.

(ii) Suppose that u = 0 when h = h0 (constant). Deduce that equations (1) admit a

solution with (u − 4c) constant everywhere, and u constant along the straight-line
characteristics

dx

dt
=
5

4
u+ c0, c

2
0 =
1

2
gh0.

The channel is bounded at x = 0 by a wall, with the fluid occupying the region x > 0.

Initially the fluid is at rest and has depth h0. From time t = 0 onwards the wall moves in

the negative x−direction with speed αt (α constant).

(iii) Assuming a solution of the form given in (ii), deduce that in the region x ≥ c0t, the
flow remains in its initial state.

(iv) By considering a characteristic originating from the wall at time τ, show that in the

region −1
2
αt2 ≤ x ≤ c0t the solution for u is

u(x, t) = −ατ(x, t),

with τ given in terms of x and t by

x+
1

2
ατ 2 =

(

c0 −
5

4
ατ

)

(t− τ).

Find the corresponding solution for h(x, t).
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5. An isentropic gas evolves according to the equations

∂ρ

∂t
+
∂

∂x
(ρu) = 0,

∂u

∂t
+ u
∂u

∂x
= −ρ

∂ρ

∂x
, (1)

in the usual notation.

(i) Show that small perturbations ũ(x, t), ρ̃(x, t) to the uniform state u = u0, ρ = ρ0
satisfy a convected wave equation, and deduce that the wave disturbances propagate

at speeds u0 ± ρ0.

(ii) Show that the nonlinear equations (1) can be rewritten in the form

(
∂

∂t
+ (u+ ρ)

∂

∂x

)

(u+ ρ) = 0,

(
∂

∂t
+ (u− ρ)

∂

∂x

)

(u− ρ) = 0.

Deduce that (u+ρ), (u−ρ) are constant along straight-line characteristics, and write
down the equations of these characteristics.

(iii) Hence or otherwise deduce that the general solution for u can be written as

u = F (x− (u+ ρ)t) +G (x− (u− ρ)t) ,

where F,G are arbitrary functions. Find the corresponding solution for ρ. What is the

relationship between u and ρ that ensures that waves propagate in both the positive

and negative x−directions?
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