Imperial College London

UNIVERSITY OF LONDON

BSc and MSci EXAMINATIONS (MATHEMATICS)
 MAY-JUNE 2004

This paper is also taken for the relevant examination for the Associateship.

M2A3 ONE-DIMENSIONAL FLUID DYNAMICS

Date: Wednesday, 19th May 2004 Time: 2 pm-4pm

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. (i) Give a brief outline of the Eulerian and Lagrangian descriptions of one-dimensional unsteady fluid motion, and explain how the material derivative $D / D t$ is defined.
(ii) The Eulerian velocity for a fluid flow is given by

$$
u^{E}(x, t)=\frac{3 t^{2} x}{1+t^{3}}+1+t^{3}
$$

A fluid particle is at the location $x=\xi$ at time $t=0$. Find its position and acceleration at time t in terms of ξ and t. Verify that the particle acceleration is equal to $D u^{E} / D t$.
(iii) Explain briefly the meaning of the following:
(a) Froude number
(b) Hydraulic jump
(c) Bore
(d) Mach number
(e) Shock wave
2. An isentropic gas evolves according to the equations

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho u) & =0 \\
\rho\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}\right) & =-k^{2} \rho \frac{\partial \rho}{\partial x}
\end{aligned}
$$

where u is the velocity, ρ the density, x distance, t time and k is a constant.
(i) Assuming a density-velocity relation of the form $\rho=\rho(u)$, show that solutions to the above equations are only possible if

$$
\rho=k^{2}\left(\rho^{\prime}(u)\right)^{2} .
$$

(ii) Solve this equation for ρ, applying the condition $\rho=\rho_{0}$ (constant) when $u=0$. Assuming that the density is an increasing function of velocity, show that $u(x, t)$ satisfies a kinematic wave equation of the form

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\left(\frac{3}{2} u+k \rho_{0}^{1 / 2}\right) \frac{\partial u}{\partial x}=0 . \tag{1}
\end{equation*}
$$

What is the speed of propagation of the waves as a function of u ?
Consider an initial velocity distribution of the form

$$
u(x, 0)=\left\{\begin{array}{cc}
U_{0}, & x<0, \\
0, & x>0,
\end{array} \quad\left(U_{0} \text { constant }\right),\right.
$$

so that there is a shock at $x=0$ separating two regions of uniform velocity.
(iii) Verify that the characteristics of (1), emanating from $t=0$, cross in the first quadrant of the $x-t$ plane. What are the implications of this event?
(iv) By considering the kinematic wave equation in conservative form, show that at time t the shock front has advanced a distance

$$
\left(\frac{3}{4} U_{0}+k \rho_{0}^{1 / 2}\right) t
$$

3. (a) Fluid of constant density ρ_{0} flows at speed u through a pipe with cross-sectional area $A(x, t)$ where x is the direction of motion of the fluid and t is time. The pipe is inclined at an angle α to the horizontal, and the equations of motion are:

$$
\begin{array}{r}
\rho_{0} \frac{\partial A}{\partial t}+\rho_{0} \frac{\partial}{\partial x}(A u)=0 \\
\rho_{0}\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}\right)=-\frac{\partial p}{\partial x}+\rho_{0} g \sin \alpha \\
0=-\frac{\partial p}{\partial z}-\rho_{0} g \cos \alpha
\end{array}
$$

with g the acceleration due to gravity, p pressure and z measured normal to the slope.
(i) Explain briefly the fundamental principles involved in the derivation of these equations and give a physical interpretation of each term.
(ii) How do these equations simplify when the flow is steady?
(b) A tap supplies a constant flux Q_{0} of water. The water flows out of the tap vertically downwards in the form of a jet at constant atmospheric pressure p_{0}. The jet has a circular cross-section with radius $r(y)$ where y is measured in the direction of gravity, and $r=r_{0}$ when $y=y_{0}$.
(i) Show that

$$
r=r_{0}\left(\frac{2 \pi^{2} r_{0}^{4} g}{Q_{0}^{2}}\left(y-y_{0}\right)+1\right)^{-1 / 4}
$$

(ii) In addition to the information given in the question, what extra assumption is made in obtaining this solution? Show that $d r / d y \rightarrow 0$ as $y \rightarrow \infty$ and discuss the relevance of this result to the assumption you stated.
4. A fluid of constant density ρ_{0} flows steadily through a horizontal channel with triangular cross-section $A=h^{2} \tan \alpha$, where α is a constant.
(i) Use Bernoulli's equation and the equation of continuity to show that the flux Q is related to the fluid depth h by the equation

$$
Q^{2}=2 h^{4}(E-h) g \tan ^{2} \alpha,
$$

where E is a constant.
(ii) Show that for fixed E, the flux is a maximum when $h=4 E / 5$. Find the maximum flux $Q_{\text {max }}$ in terms of E and the corresponding fluid velocity.
(iii) Sketch Q^{2} versus h for fixed E and show graphically that there are two flows (u_{1}, h_{1}) and (u_{2}, h_{2}) that provide the same flux $Q\left(<Q_{\max }\right)$.
(iv) Demonstrate that one of these flows has a Froude number F (based on h) greater than $1 / \sqrt{2}$, and the other has $F<1 / \sqrt{2}$.
5. (a) The equations of motion for an unsteady one-dimensional open channel flow with free surface $h(x, t)$ are, in the usual notation:

$$
\frac{\partial h}{\partial t}+\frac{\partial}{\partial x}(h u)=0, \quad \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=-g \frac{\partial h}{\partial x} .
$$

(i) Show that these equations may be written in the alternative form

$$
\begin{aligned}
& \left(\frac{\partial}{\partial t}+(u+c) \frac{\partial}{\partial x}\right)(u+2 c)=0 \\
& \left(\frac{\partial}{\partial t}+(u-c) \frac{\partial}{\partial x}\right)(u-2 c)=0
\end{aligned}
$$

where $c^{2}=g h$.
(ii) Suppose that $u=u_{0}$ when $c=c_{0}$. Deduce that these equations admit a solution with $(u-2 c)$ constant everywhere, and u constant along the characteristics

$$
\frac{d x}{d t}=\frac{3}{2} u-\frac{1}{2} u_{0}+c_{0}
$$

(b) A semi-infinite region of water of uniform depth h_{0} extends to infinity in the positive x-direction, is at rest initially, and is bounded at the end $x=0$ by a vertical wall. At time $t=0$ the wall starts to move in the negative x-direction with speed $V_{0} \tanh (\alpha t)$, where V_{0} and α are constants.
(i) Calculate the position $X(t)$ of the wall at time t.
(ii) Assuming a solution of the form given in (a)(ii), show that at time t the depth of the water is given by

$$
h(x, t)=h_{0}\left(1-\frac{V_{0}}{2 c_{0}} \tanh (\alpha \tau)\right)^{2}, \quad\left(X(t) \leq x \leq c_{0} t\right)
$$

where $c_{0}^{2}=g h_{0}$ and τ is given in terms of x and t by the relation

$$
x+\frac{V_{0}}{\alpha} \ln (\cosh (\alpha \tau))=\left(c_{0}-\frac{3}{2} V_{0} \tanh (\alpha \tau)\right)(t-\tau) .
$$

