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1. A function y(x) has the property that the functional

F [y] =

∫ b

a

f(y, yx, x)dx

is stationary with respect to all variations

y(x)→ y(x) + εη(x)

which keep y(a) and y(b) fixed. Show how this property leads to the Euler-Lagrange

equation satisfied by y(x).

A mass m moves in the plane along the curve given in polar coordinates by

r = f(θ).

It is released from rest at the point (r, θ) = (f(0), 0), and moves with constant total

energy under the potential

V = mgr.

Write down as an integral
∫ θ1
0
L(f, f ′, θ)dθ, the time taken for the particle to reach the

point (r, θ) = (f(θ1), θ1), and write down the Euler-Lagrange equation which f must

satisfy if this time is minimised.

Identify a symmetry of the problem, and hence, stating any general result that you use,

integrate the Euler-Lagrange equation once, and reduce it to a first order differential

equation. Do not attempt to solve this ordinary differential equation.

2. Explain what is meant by a symmetry of a Lagrangian

L(q, q̇, t),

and state Noether’s theorem.

A simplified model of a water molecule consists of a mass M at the point x0 in the

plane, and two other masses m at points x1 and x2. These two are joined to the mass

M by rigid rods of length a.

The only potential in the system is a function V (θ), where θ is the angle between the

two rods.

Write down a Lagrangian for this constrained system. How many degrees of freedom

does the system have?

Identify six symmetries of the system, and write down the corresponding integrals of

the motion. In particular find the conserved quantity corresponding to the Galilean

invariance of L. Show how the number of degrees of freedom may thus be reduced by

going to a moving frame of reference, and eliminating x0.
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3. (a) Explain briefly how, given the Euler-Lagrange equations corresponding to a

Lagrangian

L(q, q̇, t),

one may define a function

H(q,p, t),

and a set of equations of motion for q and p which are equivalent to the Euler-

Lagrange equations. State clearly how the functionH(q,p, t) and the new variables

p are defined.

(b) Two masses are suspended from an inextensible string of length `+ a. This passes

over two small smooth pulleys a distance ` apart, and from one end, a mass m

is constrained to hang vertically downwards from the pulley, while from the other,

a mass M hangs, which is free to move in the plane. Gravity acts vertically

downwards.

m

z r

`

θ

M

g

Using coordinates as in the diagram, write down a Lagrangian for the system, using

the constraint to eliminate z and ż.

Find the Hamiltonian corresponding to this Lagrangian, and write down Hamilton’s

equations.

M2A2 Dynamics I (2006) Page 3 of 4



4. Define an equilibrium of a Lagrangian dynamical system, and derive the conditions which

any equilibrium configuration must satisfy.

Three pendula are coupled by a nearest neighbour potential. The Lagrangian of the

system is:

L =
I

2

(
θ̇21 + θ̇

2
2 + θ̇

2
3

)
+k (cos(θ1) + cos(θ1 − θ2) + cos(θ2) + cos(θ2 − θ3) + cos(θ3)) ,

where I and k are constants.

Find the equilibrium conditions for this system.

Verify that the configuration (θ1, θ2, θ3) = (0, 0, 0) is an equilibrium, and calculate the

Lagrangian L(2) describing small perturbations about this equilibrium.

Hence find the normal modes of the system about this configuration. Is the linearised

motion resulting from a general small perturbation of this state (a) bounded, (b)

periodic?

5. A collection of masses mi at points ri(t) rotates rigidly about a fixed point r0, with

angular velocity (in space) ω. Calculate the angular momentum of the system about

the point r0 in terms of ω. Hence define the inertia tensor of the system and write down

an explicit expression for it.

Calculate the inertia tensor, about the origin, of a system consisting of four masses m

at the two points (±a, 0, 0), and the two points (0,±b, 0).

If b > a, find the principal axes of the inertia tensor, and the corresponding principal

moments of inertia. State about which axes you would expect the body to rotate freely

without an applied couple. Would such a motion always be stable? If not, state about

which axis or axes you would expect the rotation to be unstable.
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