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1. A function y(x) has the property that the functional

F [y] =

∫ b

a

f(y, yx, x)d)x

is stationary with respect to all variations

y(x)→ y(x) + εη(x)

which keep y(a) and y(b) fixed. Show how this property leads to the Euler-Lagrange

equation satisfied by y(x).

In the case that f is independent of x, show that the Euler-Lagrange equation has an

integral - a function g(y, yx) such that

dg

dx
= 0.

What is the relationship between f(y, yx) and g(y, yx)?

A surface of revolution S is given by

r = cosh(z)

in cylindrical polar coordinates (r, z, φ). A curve, lying in S, is given by:

z = z(φ)

and is chosen to connect the two points (z1, φ1), (z2, φ2). Write down the total length

of this curve as an integral in the form

L =

∫ φ2

φ1

h(z,
dz

dφ
, φ)dφ.

Find the Euler-Lagrange equation satisfied by extrema of L. Reduce this equation to

one of first order, and hence show that the extrema may be given as:

∫ z

z1

dz
√
K2 cosh2(z)− 1

=

∫ φ

φ1

dφ,

where K is some constant.
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2. Two particles with masses m1, m2 and position vectors x1, x2, move in R3, and
interact via a potential V (|x1 − x2|). Write down a Lagrangian for this system and
find the corresponding Hamiltonian. By changing coordinates to:

X =
1

m1 +m2
(m1x1 +m2x2)

r = x1 − x2,

show that the Lagrangian decouples into two independent parts, each depending on

either X and its derivatives or r and its derivatives. Show that the quantity

k = r ∧ ṙ

is conserved, and hence show that r(t) is confined to a certain plane for all t.

By transforming to polar coordinates in this plane, show that the radial and angular

motions also decouple. Show that the solution of the radial motion is:

∫ r

r0

dr
√
2(E − V (r))m1+m2

m1m2
− |k|2

r2

=

∫ t

0

dt,

where E is an arbitrary constant.

3. Two identical pendula of mass m and length l swing from a beam.

 

1 
2 g 

Their motions are coupled by an additional potential kθ1θ2. Write down a Lagrangian

for the combined system, and find the Euler-Lagrange equations.

Find the equations satisfied by equilibrium points of the system and verify that

θ1 = θ2 = 0 is an equilibrium. Expand the Lagrangian for small disturbances from this

equilibrium, and find the normal modes and their frequencies. What is the condition

for this equilibrium to be stable?
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4. Euler’s equations for a rigid body rotating about the origin are:

dJ

dt
= −Ω ∧ J + G.

Explain the meaning of each term in the equation, and sketch the key steps in its

derivation. How would Ωand Jbe related?

A rigid body is symmetrical about its third axis. It rotates freely about its centre of

mass, so its Lagrangian in terms of the Euler angles is:

L =
1

2
I1(θ̇

2 + sin2(θ)φ̇2) +
1

2
I3(ψ̇ + cos(θ)φ̇)

2.

Identify the symmetries of this Lagrangian and find the corresponding conserved

quantities.

Find the Hamiltonian corresponding to L, and hence show that if y = cos(θ), then it

satisfies:

ẏ2 = α + βy + γy2,

where α, β, γ are constants of integration.

5. A heavy inextensible rope of constant mass density ρ per unit length and total length

l, moves in the (x, y) plane. One end is attached to a fixed point at the origin, while

the other end is free to move. The curve of the rope at time t is given parametrically

by the functions (x(s, t), y(s, t)). Take s to be the arclength along the rope, measured

from the fixed end.

Write down the kinetic energy of the rope, and the constraint which the functions

x(s, t) and y(s, t) must satisfy, and hence show that, if no external forces act on the

rope, a Lagrangian for the constrained system is:

L =

∫ l

0

ρ

2

(
∂x

∂t

2

+
∂y

∂t

2)

−
λ(s, t)

2

(
∂x

∂s

2

+
∂y

∂s

2)

ds.

The equations of motion are found by looking for extrema of
∫ t2

t1

Ldt

with respect to variations

x(s, t)→ x(s, t) + εξ(s, t),

y(s, t)→ y(s, t) + εη(s, t),

and requiring (ξ, η) to vanish at the boundaries t = t1, t = t2, and at the fixed

end s = 0. Obtain the Euler-Lagrange equations of the system from first principles;

by considering the boundary term at the free end s = l, show that the Lagrange

multiplier λ must vanish at this point.

By eliminating the Lagrange multiplier using the constraint, show that

∂2x

∂t2
=

∂

∂s

(
∂x

∂s

∫ s

l

∂2x

∂t2
∙
∂x

∂s′
ds′
)

.
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