M2A1 Exam 2007

1. Consider the pair of ordinary differential equations

$$
\dot{x}=-x-x y, \quad \dot{y}=1-x-y,
$$

where the dot refers to differentiation with respect to time t.
(i) Show that they have two fixed points, one of which lies on the y-axis and the other lies in the lower half-plane.
(ii) Find the local eigenvalues and eigenvectors of the Jacobian matrices corresponding to each point. Hence show that these points are classified as a stable node and a saddle respectively.
(iii) Sketch the phase plane showing how phase trajectories connect between these two points.
(iv) In particular sketch the trajectory in the upper half-plane that is is tangent to the x-axis at the point $(1,0)$. Use the differential equations to show that near this point, this trajectory can be approximated by

$$
y=\frac{1}{2}(x-1)^{2} .
$$

2. Find the critical points of the nonlinear system of ordinary differential equations

$$
\dot{x}=y, \quad \dot{y}=y+1-x^{2} .
$$

Classify these critical points and sketch a selection of orbits in the phase plane. On your diagram, you should show the locus of points on which $d y / d x=0$, the locus of points on which $d y / d x=\infty$, and the signs of $d y / d x$ in each sector into which the phase plane is divided by these loci.
3. Use the disturbance function method to show that the integral

$$
I=\int_{x_{1}}^{x_{2}} f\left(x, y, y^{\prime}\right) d x
$$

takes stationary values if $y(x)$ satisfies the Euler-Lagrange equation

$$
f_{y}-\frac{d}{d x} f_{y^{\prime}}=0
$$

$y\left(x_{1}\right)$ and $y\left(x_{2}\right)$ take fixed values and subscripts denote partial derivatives. You may assume that f has continuous 2 nd partial derivatives.
(i) Write down an expression for the total derivative $d / d x$.
(ii) Show that the Euler-Lagrange equation can be written in the form

$$
f_{x}+\frac{d}{d x}\left(y^{\prime} f_{y^{\prime}}-f\right)=0
$$

Hence show that if $y(0)=0$ and $y(1)=1$ and

$$
I=\int_{0}^{1}\left(y^{\prime 2}+\beta^{2} y^{2}\right) d x
$$

then I takes stationary values when $y(x)$ satisfies

$$
y=\frac{\sinh \beta x}{\sinh \beta} .
$$

4. The positive part of the y-axis is the principal axis of a cone whose vertex lies at the origin. The curved surface of the cone is represented by

$$
x^{2}+z^{2}=y^{2},
$$

which is parametrized by $x=y \cos \theta$ and $z=y \sin \theta$. Show that the arc length of a curve on this surface, with end points represented by θ_{1} and θ_{2}, is given by

$$
\operatorname{arc} \text { length }=\int_{\theta_{1}}^{\theta_{2}} d s=\int_{\theta_{1}}^{\theta_{2}}\left\{2\left(\frac{d y}{d \theta}\right)^{2}+y^{2}\right\}^{1 / 2} d \theta
$$

Show that the arc length takes stationary values when y and θ satisfy the differential equation

$$
2 c^{2}\left(\frac{d y}{d \theta}\right)^{2}=y^{2}\left(y^{2}-c^{2}\right), \quad c=\text { const }
$$

Show that this differential equation is satisfied by

$$
y= \pm c \operatorname{cosec}\left(\frac{\theta+\delta}{\sqrt{2}}\right), \quad \delta=\text { const }
$$

You may assume the Euler-Lagrange equations in the form $\left(y^{\prime}=d y / d \theta\right)$

$$
f_{\theta}+\frac{d}{d \theta}\left(y^{\prime} f_{y^{\prime}}-f\right)=0
$$

5. Traffic flows on a road with a density $\rho(x, t)$ according to the kinematic wave equation

$$
\rho_{t}+(1-\rho) \rho_{x}=0 .
$$

(a) Show that for initial data $\rho(x, 0)=f(x)$ there is an implicit solution of the form

$$
\rho=f(x-(1-\rho) t)
$$

(b) Consider the two sets of initial conditions:
(i)

$$
f(x)=\left\{\begin{array}{cl}
x & 0 \leq x \leq 1 \\
2-x & 1 \leq x \leq 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

(ii)

$$
f(x)=\left\{\begin{array}{cl}
1 & x \leq 0 \\
\frac{1}{1+x} & x \geq 0
\end{array}\right.
$$

Show that a shock develops from (i) but not from (ii). Does this shock develop on the backwards-looking face or the forwards-looking face?
(c) For case (i) in Part (b) above, find the solution $\rho(x, t)$ explicitly in terms of x and t.
(d) Show that for this version of the kinematic wave equation, the propagation velocity is less than the flow velocity.

