[1] For the following system of non-linear ordinary differential equations:

$$
\dot{x}=x-x y \quad \dot{y}=-y+x^{2} y,
$$

find the critical points and determine their nature. Mark in each apropriate region of the phase plane the sign of $d y / d x$, together with the locus of points on which $d y / d x=0$ and the locus of points on which $d y / d x=\infty$.
Sketch the phase plane drawing a few trajectories in each quadrant.
Show that trajectories represent solutions of the transcendental equation

$$
\ln |x y|=y+\frac{1}{2} x^{2}+c
$$

where c is a constant which is dependent on initial conditions.
[2] Show that the equations for the separatrices of the nonlinear oscillator

$$
\ddot{x}=F(x)
$$

are given by $(y=\dot{x})$

$$
\frac{1}{2} y^{2}=\int_{x_{0}^{(s)}}^{x} F\left(x^{\prime}\right) d x^{\prime}
$$

where $x_{0}^{(s)}$ in the lower limit represents a certain class of critical points. What class of critical points do these need to be and what is the corresponding condition on $F(x)$?

If $F(x)$ is given by

$$
F(x)=\sin x-\sin 2 x
$$

show that the equations for the separatrices are

$$
\sqrt{2} y= \pm(2 \cos x-1) .
$$

Hence sketch the phase plane, including these separatrices.
[3] A guitar string of length L and constant density ρ is clamped at both ends with a tension T. It undergoes small transverse oscillations $y(x, t)$ which are governed by the wave equation

$$
\frac{\partial^{2} y}{\partial x^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} y}{\partial t^{2}}=0
$$

where $c^{2}=T / \rho$. Given the end conditions, use the method of separation of variables to show that the general solution is

$$
y(x, t)=\sum_{n=1}^{\infty} R_{n} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\omega_{n} t+\delta_{n}\right)
$$

where $\omega_{n}=n \pi c / L$ and R_{n} and δ_{n} are arbitrary constants.
Given that the total energy in the string is given by

$$
E=\frac{1}{2} T \int_{0}^{L}\left\{\left(\frac{\partial y}{\partial x}\right)^{2}+\frac{1}{c^{2}}\left(\frac{\partial y}{\partial t}\right)^{2}\right\} d x
$$

use the above solution to show that

$$
E=\frac{\pi^{2} T}{4 L} \sum_{n=1}^{\infty} n^{2} R_{n}^{2}
$$

Orthogonality relations between the sines and cosines for integers n and m are given by

$$
\int_{0}^{L} \quad \sin \left(\frac{n \pi x}{L}\right) \begin{gathered}
\sin \\
\cos
\end{gathered}\left(\frac{m \pi x}{L}\right) d x=\frac{1}{2} L \delta_{n m}
$$

[4] (i) The kinematic wave equation for the density of a quantity $\rho(x, t)$ is governed by

$$
\rho_{t}+c(\rho) \rho_{x}=0
$$

where $c(\rho)$ is the propagation velocity. Initial data is specified by $\rho(x, 0)=f(x)$ where $f(x)$ is some continuous function in $-\infty \leq x \leq \infty$. Show that ρ_{x} and ρ_{t} can only become simultaneously infinite at some positive time t^{*} if $c^{\prime} f^{\prime}<0$ somewhere in $-\infty \leq x \leq \infty$.
(ii) Using the notation $y^{\prime}=d y / d x$, consider the functional

$$
I[y(x)]=\int_{a}^{b} f\left(x, y, y^{\prime}\right) d x,
$$

where $f\left(x, y, y^{\prime}\right)$ is at most quadratic in y and y^{\prime} and has continuous second derivatives. The values of $y(a)$ and $y(b)$ are fixed. Let the stationary function of I be $Y(x)$ and let $h(x)$ be any function with a continuous first derivative satisfying $h(a)=h(b)=0$. Use a double Taylor expansion to show that

$$
I[Y(x)+h(x)]-I[Y(x)]=\frac{1}{2} \int_{a}^{b}\left[f_{y y} h^{2}+2 h h^{\prime} f_{y y^{\prime}}+f_{y^{\prime} y^{\prime}} h^{\prime 2}\right]_{y=Y} d x
$$

If $f_{y y}>0$ and $f_{y^{\prime} y^{\prime}}>0$ what is the condition that $Y(x)$ is a minimizer for the functional I?
The Euler-Lagrange equation in these co-ordinates is

$$
\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0
$$

[5] Use spherical co-ordinates

$$
x=\sin \theta \cos \phi ; \quad y=\sin \theta \sin \phi ; \quad z=\cos \theta
$$

to show that the length of an arc between two points on the surface of a sphere of radius unity is

$$
s=\int_{\theta_{1}}^{\theta_{2}}\left[1+\sin ^{2} \theta\left(\frac{d \phi}{d \theta}\right)^{2}\right]^{1 / 2} d \theta
$$

Hence show that the geodesic connecting these points is given by

$$
a \sin (\phi+\delta)+\cot \theta=0
$$

where δ and a are arbitrary constants. Show that this represents the arc of a circle formed by the intersection of the sphere with a plane that passes through both of these points and the centre of the sphere.

The Euler-Lagrange equation in these co-ordinates is

$$
\frac{\partial f}{\partial \phi}-\frac{d}{d \theta}\left(\frac{\partial f}{\partial \phi^{\prime}}\right)=0 .
$$

