
M2A1 – 2004

[1] For the following system of non-linear ordinary differential equations:

ẋ = x− xy ẏ = −y + x2y,

find the critical points and determine their nature. Mark in each apropriate region of the phase
plane the sign of dy/dx, together with the locus of points on which dy/dx = 0 and the locus of
points on which dy/dx =∞.

Sketch the phase plane drawing a few trajectories in each quadrant.

Show that trajectories represent solutions of the transcendental equation

ln |xy| = y + 1
2
x2 + c

where c is a constant which is dependent on initial conditions.

[2] Show that the equations for the separatrices of the nonlinear oscillator

ẍ = F (x)

are given by (y = ẋ)

1
2
y2 =

∫ x

x
(s)
0

F (x′) dx′

where x
(s)
0 in the lower limit represents a certain class of critical points. What class of critical

points do these need to be and what is the corresponding condition on F (x)?

If F (x) is given by
F (x) = sin x− sin 2x

show that the equations for the separatrices are

√
2y = ±(2 cosx− 1) .

Hence sketch the phase plane, including these separatrices.
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[3] A guitar string of length L and constant density ρ is clamped at both ends with a tension
T . It undergoes small transverse oscillations y(x, t) which are governed by the wave equation

∂2y

∂x2
−
1

c2
∂2y

∂t2
= 0 ,

where c2 = T/ρ. Given the end conditions, use the method of separation of variables to show
that the general solution is

y(x, t) =
∞∑

n=1

Rn sin

(
nπx

L

)

sin (ωnt+ δn)

where ωn = nπc/L and Rn and δn are arbitrary constants.

Given that the total energy in the string is given by

E = 1
2
T

∫ L

0

{(
∂y

∂x

)2
+
1

c2

(
∂y

∂t

)2}

dx

use the above solution to show that
E =

π2T

4L

∞∑

n=1

n2R2n .

Orthogonality relations between the sines and cosines for integers n and m are given by

∫ L

0

sin
cos

(
nπx

L

)
sin
cos

(
mπx

L

)

dx = 1
2
Lδnm .

[4] (i) The kinematic wave equation for the density of a quantity ρ(x, t) is governed by

ρt + c(ρ)ρx = 0

where c(ρ) is the propagation velocity. Initial data is specified by ρ(x, 0) = f(x) where f(x) is
some continuous function in −∞ ≤ x ≤ ∞. Show that ρx and ρt can only become simultaneously
infinite at some positive time t∗ if c′f ′ < 0 somewhere in −∞ ≤ x ≤ ∞.

(ii) Using the notation y′ = dy/dx, consider the functional

I[y(x)] =

∫ b

a
f(x, y, y′) dx,

where f(x, y, y′) is at most quadratic in y and y′ and has continuous second derivatives. The
values of y(a) and y(b) are fixed. Let the stationary function of I be Y (x) and let h(x) be
any function with a continuous first derivative satisfying h(a) = h(b) = 0. Use a double Taylor
expansion to show that

I[Y (x) + h(x)]− I[Y (x)] = 1
2

∫ b

a

[
fyyh

2 + 2hh′fyy′ + fy′y′h
′2
]

y=Y
dx.

If fyy > 0 and fy′y′ > 0 what is the condition that Y (x) is a minimizer for the functional I?

The Euler-Lagrange equation in these co-ordinates is

∂f

∂y
−
d

dx

(
∂f

∂y′

)

= 0 .
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[5] Use spherical co-ordinates

x = sin θ cosφ; y = sin θ sinφ; z = cos θ

to show that the length of an arc between two points on the surface of a sphere of radius unity
is

s =

∫ θ2

θ1

[

1 + sin2 θ

(
dφ

dθ

)2]1/2

dθ .

Hence show that the geodesic connecting these points is given by

a sin(φ+ δ) + cot θ = 0

where δ and a are arbitrary constants. Show that this represents the arc of a circle formed by
the intersection of the sphere with a plane that passes through both of these points and the
centre of the sphere.

The Euler-Lagrange equation in these co-ordinates is

∂f

∂φ
−
d

dθ

(
∂f

∂φ′

)

= 0 .
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