[1] Consider the pair of ordinary differential equations in the variables $x(t)$ and $y(t)$

$$
\dot{x}=x-x^{2}-x y, \quad \dot{y}=\frac{3}{2} y-y^{2}-2 x y .
$$

Show that this system has four fixed points; one saddle, two stable nodes and an unstable node. Sketch the phase plane, marking regions where $d y / d x$ is postive, negative, zero or infinity.
[2] Show that the pair of ordinary differential equations

$$
\dot{x}=y\left(1+y^{2}\right), \quad \dot{y}=1-x^{2} .
$$

has one centre and one saddle in the phase plane. Sketch the phase plane diagram.
By direct integration of the equation for $d y / d x$, confirm that a family of periodic orbits surround the centre.
[3] A string of mass per unit length (density) ρ is clamped at two points $x=0$ and $x=L$ and stretched between them with a tension T. Show that small lateral oscillations in the y-direction are governed by the wave equation

$$
\frac{\partial^{2} y}{\partial x^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} y}{\partial t^{2}}=0
$$

where $c^{2}=T / \rho$, explaining any approximations you might use. Given the end conditions, use the method of separation of variables to show that the general solution is

$$
y(x, t)=\sum_{n=0}^{\infty} \sin \left(\frac{n \pi x}{L}\right)\left\{A_{n} \cos \left(\frac{n \pi c t}{L}\right)+B_{n} \sin \left(\frac{n \pi c t}{L}\right)\right\},
$$

where A_{n} and B_{n} are arbitrary constants.
[4] Traffic of density $\rho(x, t)$ flows on a motorway with no entry or exit points. $\rho(x, t)$ and the flux $Q(\rho)$ obey the conservation equation

$$
\frac{\partial \rho}{\partial t}+\frac{\partial Q(\rho)}{\partial x}=0
$$

For the model to be effective, $Q(\rho)$ must be chosen such that shocks occurring in ρ should travel backwards. Discuss what general shape the flux $Q(\rho)$ should take, given that the initial distribution of traffic on the motorway $\rho(x, 0)=f(x)$ is Gaussian-shaped. If the flow velocity is given by $V=Q / \rho$ and the propagation velocity by $c(\rho)=d Q / d \rho$, show that your choice is consistent with $V>c$.

If $Q=\rho\left(\rho_{0}-\frac{1}{2} \rho\right)$, with ρ_{0} a positive constant, show that this choice has the right properties for a traffic flow model. Solve for $\rho(x, t)$ when initial data $\rho(x, 0)=f(x)$ is given by

$$
f(x)=\left\{\begin{array}{cc}
x & 0 \leq x \leq 1 \\
2-x & 1 \leq x \leq 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

At what time does the shock occur?
[5] In cylindrical co-ordinates (r, θ, z) show that a small element of arc length $d s$ is given by

$$
(d s)^{2}=(d r)^{2}+r^{2}(d \theta)^{2}+(d z)^{2}
$$

Show that the arc length of a curve on the cylindrically symmetric parabolic surface $z=\frac{1}{2} r^{2}$, with end points represented by θ_{1} and θ_{2}, is given by

$$
\operatorname{arc} \text { length }=\int_{\theta_{1}}^{\theta_{2}} d s=\int_{\theta_{1}}^{\theta_{2}}\left\{\left(1+r^{2}\right) r^{\prime 2}+r^{2}\right\}^{1 / 2} d \theta
$$

where $r^{\prime}=d r / d \theta$.
Show that the arc length takes stationary values when θ and $r=c \cosh \alpha$ satisfy the relation

$$
\int\left(\operatorname{sech}^{2} \alpha+c^{2}\right)^{1 / 2} d \alpha=\theta+\delta
$$

where $c>0$ and δ are constants.
You may use the Euler-Lagrange equation in the form

$$
f_{\theta}+\frac{d}{d \theta}\left(r^{\prime} f_{r^{\prime}}-f\right)=0
$$

