[1] An SIR disease model relating the number of susceptibles $x(t)$, infectives $y(t)$ and recovered $z(t)$, is governed by the set of ordinary differential equations

$$
\dot{x}=-x^{2} y+\alpha \quad \dot{y}=x^{2} y-y \quad \dot{z}=y-\alpha
$$

where $x+y+z=N$ and the birthrate constant α is positive.
Show that there is only one critical point in the first quadrant of the $x-y$ phase plane and that this is a stable node when $\alpha>2$ and a stable spiral when $\alpha<2$. What is the classification of the critical point when $\alpha=2$?

When α lies in the range $0<\alpha<2$, sketch some typical orbits in the first quadrant of the phase plane, marking the sign of $d y / d x$ in appropriate regions.

What is the final value of z ? Comment on the physical significance of these results for both ranges of α.
[2] (a) Construct the phase plane diagram for the nonlinear oscillator equation

$$
\ddot{x}+x-x^{5}=0,
$$

using the phase plane in which $y=\dot{x}$. The dot denotes differentiation with respect to time t.

Show that the separatrices are given by

$$
3 y^{2}=\left(x^{2}-1\right)^{2}\left(x^{2}+2\right)
$$

and sketch these curves on your diagram.
(b) Show that the nonlinear oscillator equation

$$
\ddot{x}+x+x^{5}=0,
$$

has just one critical point and that it is a centre. Determine an energy equation for the family of trajectories. Express this in polar coordinates, given by $x=r \cos \theta, y=r \sin \theta$. By considering the roots of the cubic equation for $\lambda=r^{2}$ (or otherwise) show that on any trajectory, r is a bounded, periodic and single-valued function of θ. From this information, can you deduce what property these trajectories have?
[3] The wave equation

$$
\frac{\partial^{2} y}{\partial x^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} y}{\partial t^{2}}=0
$$

governs small lateral oscillations on a string of length π which is fixed at $x=0$ and $x=\pi$. Given the end conditions, use the method of separation of variables to find the general solution.

The string is released at $t=0$ with a shape profile

$$
y(x, 0)=x(\pi-x)
$$

and zero velocity. Show that for $t \geq 0$

$$
y(x, t)=\frac{8}{\pi} \sum_{m=0}^{\infty} \frac{\sin [(2 m+1) x] \cos [(2 m+1) c t]}{(2 m+1)^{3}} .
$$

Deduce that for all time the maximum displacement of the string remains at its midpoint.
[4] The density $\rho(x, t)$ of a quantity evolves according to the kinematic wave equation

$$
\frac{\partial \rho}{\partial t}+c(\rho) \frac{\partial \rho}{\partial x}=0
$$

where $c(\rho)$ is the propagation velocity.
Show that for initial data $\rho(x, 0)=f(x)$ there is an implicit solution of the form

$$
\rho=f(x-c(\rho) t) .
$$

Consider the set of initial conditions:

$$
f(x)=\left\{\begin{array}{cc}
x & 0 \leq x \leq 1 \\
1 & 1 \leq x \leq 2 \\
3-x & 2 \leq x \leq 3 \\
0 & \text { otherwise }
\end{array}\right.
$$

When (i) $c(\rho)=\rho$ and (ii) $c(\rho)=2-\rho$, find the exact solution $\rho=\rho(x, t)$ in each case. Show that a shock develops at time $t=1$ in each case. Sketch the evolution of ρ for the four times $t=0,0<t<1, t=1$ and $t>1$ in case (i).
[5] (a) For a variational problem of the form

$$
I=\int_{\theta_{1}}^{\theta_{2}} f\left[\theta, x(\theta), x^{\prime}(\theta)\right] d \theta
$$

where $x^{\prime}=d x / d \theta$, if $x(\theta)$ satisfies the Euler-Lagrange equation

$$
\frac{\partial f}{\partial x}-\frac{d}{d \theta}\left(\frac{\partial f}{\partial x^{\prime}}\right)=0
$$

then I takes stationary values. Show that the Euler-Lagrange equation can be re-written in the form

$$
\frac{d}{d \theta}\left(x^{\prime} \frac{\partial f}{\partial x^{\prime}}-f\right)+\frac{\partial f}{\partial \theta}=0
$$

(b) A pair of cones, joined at their tips at the origin, have the x-axis as their principal axes of symmetry. Their curved surfaces are represented by

$$
y^{2}+z^{2}=x^{2}
$$

which is parametrized by $y=x \cos \theta$ and $z=x \sin \theta$. Show that the arc length of a curve on one of these surfaces, with end points represented by θ_{1} and θ_{2}, is given by

$$
\operatorname{arc} \text { length }=\int_{\theta_{1}}^{\theta_{2}} d s=\int_{\theta_{1}}^{\theta_{2}}\left\{2\left(\frac{d x}{d \theta}\right)^{2}+x^{2}\right\}^{1 / 2} d \theta
$$

Show that the arc length takes stationary values when x and θ satisfy the differential equation

$$
2 c^{2}\left(\frac{d x}{d \theta}\right)^{2}=x^{2}\left(x^{2}-c^{2}\right)
$$

where c is a constant. Show that this differential equation is satisfied by

$$
x= \pm c \operatorname{cosec}\left(\frac{\theta+\delta}{\sqrt{2}}\right)
$$

where δ is another constant.

