
M2A1 – 2002

[1] An SIR disease model relating the number of susceptibles x(t), infectives
y(t) and recovered z(t), is governed by the set of ordinary differential equations

ẋ = −x2y + α ẏ = x2y − y ż = y − α

where x+ y + z = N and the birthrate constant α is positive.
Show that there is only one critical point in the first quadrant of the x− y

phase plane and that this is a stable node when α > 2 and a stable spiral when
α < 2. What is the classification of the critical point when α = 2?
When α lies in the range 0 < α < 2, sketch some typical orbits in the first

quadrant of the phase plane, marking the sign of dy/dx in appropriate regions.
What is the final value of z? Comment on the physical significance of these

results for both ranges of α.

[2] (a) Construct the phase plane diagram for the nonlinear oscillator equation

ẍ+ x− x5 = 0,

using the phase plane in which y = ẋ. The dot denotes differentiation with
respect to time t.
Show that the separatrices are given by

3y2 = (x2 − 1)2(x2 + 2),

and sketch these curves on your diagram.

(b) Show that the nonlinear oscillator equation

ẍ+ x+ x5 = 0,

has just one critical point and that it is a centre. Determine an energy equation
for the family of trajectories. Express this in polar coordinates, given by
x = r cos θ, y = r sin θ. By considering the roots of the cubic equation for
λ = r2 (or otherwise) show that on any trajectory, r is a bounded, periodic
and single-valued function of θ. From this information, can you deduce what
property these trajectories have?
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[3] The wave equation
∂2y

∂x2
−
1

c2
∂2y

∂t2
= 0.

governs small lateral oscillations on a string of length π which is fixed at x = 0
and x = π. Given the end conditions, use the method of separation of variables
to find the general solution.
The string is released at t = 0 with a shape profile

y(x, 0) = x(π − x)

and zero velocity. Show that for t ≥ 0

y(x, t) =
8

π

∞∑

m=0

sin[(2m+ 1)x] cos[(2m+ 1)ct]

(2m+ 1)3
.

Deduce that for all time the maximum displacement of the string remains at
its midpoint.

[4] The density ρ(x, t) of a quantity evolves according to the kinematic wave
equation

∂ρ

∂t
+ c(ρ)

∂ρ

∂x
= 0

where c(ρ) is the propagation velocity.
Show that for initial data ρ(x, 0) = f(x) there is an implicit solution of the

form
ρ = f (x− c(ρ)t) .

Consider the set of initial conditions:

f(x) =






x 0 ≤ x ≤ 1
1 1 ≤ x ≤ 2
3− x 2 ≤ x ≤ 3
0 otherwise

When (i) c(ρ) = ρ and (ii) c(ρ) = 2− ρ, find the exact solution ρ = ρ(x, t) in
each case. Show that a shock develops at time t = 1 in each case. Sketch the
evolution of ρ for the four times t = 0, 0 < t < 1, t = 1 and t > 1 in case (i).
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[5] (a) For a variational problem of the form

I =
∫ θ2

θ1

f [θ, x(θ), x′(θ)] dθ,

where x′ = dx/dθ, if x(θ) satisfies the Euler-Lagrange equation

∂f

∂x
−
d

dθ

(
∂f

∂x′

)

= 0

then I takes stationary values. Show that the Euler-Lagrange equation can be
re-written in the form

d

dθ

(

x′
∂f

∂x′
− f

)

+
∂f

∂θ
= 0.

(b) A pair of cones, joined at their tips at the origin, have the x-axis as their
principal axes of symmetry. Their curved surfaces are represented by

y2 + z2 = x2

which is parametrized by y = x cos θ and z = x sin θ. Show that the arc length
of a curve on one of these surfaces, with end points represented by θ1 and θ2,
is given by

arc length =
∫ θ2

θ1

ds =
∫ θ2

θ1





2

(
dx

dθ

)2

+ x2






1/2

dθ.

Show that the arc length takes stationary values when x and θ satisfy the
differential equation

2c2
(
dx

dθ

)2

= x2
(
x2 − c2

)

where c is a constant. Show that this differential equation is satisfied by

x = ±c cosec

(
θ + δ
√
2

)

where δ is another constant.
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