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[1] An SIR disease model relating the number of susceptibles z(t), infectives
y(t) and recovered z(t), is governed by the set of ordinary differential equations

=2y +a g =1zy—y Z=y—a«
where x + y + z = N and the birthrate constant « is positive.

Show that there is only one critical point in the first quadrant of the z —y
phase plane and that this is a stable node when a > 2 and a stable spiral when
a < 2. What is the classification of the critical point when a = 27

When « lies in the range 0 < o < 2, sketch some typical orbits in the first
quadrant of the phase plane, marking the sign of dy/dz in appropriate regions.

What is the final value of z? Comment on the physical significance of these
results for both ranges of «.

2] (a) Construct the phase plane diagram for the nonlinear oscillator equation
i4+x—2"=0,

using the phase plane in which y = @. The dot denotes differentiation with
respect to time ¢.
Show that the separatrices are given by

3y* = (2 — 1)*(a” + 2),

and sketch these curves on your diagram.

(b) Show that the nonlinear oscillator equation
i+z+a® =0,

has just one critical point and that it is a centre. Determine an energy equation
for the family of trajectories. Express this in polar coordinates, given by
x = rcosf,y = rsinf. By considering the roots of the cubic equation for
A = r? (or otherwise) show that on any trajectory, r is a bounded, periodic
and single-valued function of §. From this information, can you deduce what
property these trajectories have?



[3] The wave equation
Py 10%

0x? 2 ot?
governs small lateral oscillations on a string of length 7 which is fixed at z = 0
and x = 7. Given the end conditions, use the method of separation of variables
to find the general solution.
The string is released at ¢t = 0 with a shape profile

y(z,0) = z(r — z)
and zero velocity. Show that for ¢ > 0
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Deduce that for all time the maximum displacement of the string remains at
its midpoint.

[4] The density p(x,t) of a quantity evolves according to the kinematic wave
equation

dp

ot + ¢(p)

where ¢(p) is the propagation velocity.
Show that for initial data p(x,0) = f(z) there is an implicit solution of the
form

dp
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p=f(z—clp)t).

Consider the set of initial conditions:

T 0<z<1
1 1<z<2
F@)=93_4 9<,<3
0 otherwise

When (i) ¢(p) = p and (ii) ¢(p) = 2 — p, find the exact solution p = p(x,t) in
each case. Show that a shock develops at time t = 1 in each case. Sketch the
evolution of p for the four times ¢t =0, 0 <t <1, t=1and ¢t > 1 in case (i).



[5] (a) For a variational problem of the form

1= (" fl6. 2(6), '(8)] b,
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where 2’ = dx/df, if x(0) satisfies the Euler-Lagrange equation
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then I takes stationary values. Show that the Euler-Lagrange equation can be

re-written in the form
d (,0f of
d@(“””@y‘ >+ae =0

(b) A pair of cones, joined at their tips at the origin, have the z-axis as their
principal axes of symmetry. Their curved surfaces are represented by

y2+22:$2

which is parametrized by y = x cosf and z = xsinf. Show that the arc length
of a curve on one of these surfaces, with end points represented by 6; and 6,,
is given by

, , g\ ? 1/2
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arc length = ds = / 2 ax + 22 do.
0, 0, do

Show that the arc length takes stationary values when z and 6 satisfy the
differential equation
dr\”
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where c is a constant. Show that this differential equation is satisfied by

T = *ccosec L—HS
B V2

where ¢ is another constant.



