Imperial College London

BSc and MSci EXAMINATIONS (MATHEMATICS)
January 2007

M1S (Test)

Probability and Statistics

- Affix ONE label to each answer book that you use. DO NOT use the label with your name on it.
- Write your answers in a single answer book, using continuation books if necessary.
- Credit will be given for all questions attempted, but extra credit will be given for complete or nearly complete answers.
- The question in Section A will be worth $1 \frac{1}{2}$ times as many marks as either question in Section B.
- Calculators may not be used.

SECTION A

1. (i) Events A, B and C each have probability $\frac{1}{2}$. Also, B and C are independent, and A and C are exclusive. Using a set diagram, or otherwise, calculate $\mathrm{P}(B \cap C), \mathrm{P}(A \cup C)$, $\mathrm{P}(C \mid B)$ and $\mathrm{P}(A \cap B)$.
(ii) The diagram below shows a system of independently-operating components, c_{1}, \ldots, c_{4}, in which component c_{j} has reliability p_{j} ($=$ probability of operating satisfactorily). Calculate the reliability of the system.

(iii) The random variables X_{1} and X_{2} are independent with distribution functions $F_{1}(x)$ and $F_{2}(x)$, respectively. Write down the forms of the distribution functions of $V=\max \left(X_{1}, X_{2}\right)$ and $U=\min \left(X_{1}, X_{2}\right)$ in terms of F_{1} and F_{2}.
(iv) The random variable Y takes values $1, \ldots, m$ each with probability m^{-1}. Derive its probability generating function.
(v) A point is chosen uniformly at random on a line of length l, and R is the ratio of lengths of the line segments so produced. Obtain the distribution function of R.
(vi) The random variables X_{1} and X_{2} are independent, and each takes values $0,1,2$ with probabilities p_{0}, p_{1}, p_{2}, where $p_{0}+p_{1}+p_{2}=1$. Write down the probability distribution of $\left|X_{1}-X_{2}\right|$.

SECTION B

2. (a) The probability distribution of the discrete random variable X is specified as $\mathrm{P}(X=$ $j)=k / j$ for $j=1,2, \ldots, m$. Show that X has mean $m k$ and obtain its variance in terms of m and k. Given that its mean is $\frac{4}{3}$ what is the numerical value of its variance? (You may assume that $\sum_{j=1}^{m} j=\frac{1}{2} m(m+1)$.)
(b) Suppose that the continuous random variable Y has density $l y(3-y)$ on $(0,3)$. Determine the constant l, calculate the mean and variance of Y, and calculate the mean of $\{Y(3-Y)\}^{-1}$.
3. (a) The random variable Y_{1} has mean 5 and variance 3; Y_{2} has mean -4 and variance 4; Y_{1} and Y_{2} have covariance 2. Calculate the mean and variance of $2 Y_{1}-3 Y_{2}$ and the covariance between $Y_{1}+Y_{2}$ and $Y_{1}-Y_{2}$.
(b) The discrete random variable X takes values 1,2 with probabilities $\frac{3}{4}, \frac{1}{4}$. Conditionally on $X=x$, the continuous random variable Y has density function $x \mathrm{e}^{-x y}$ on $(0, \infty)$. Calculate $\mathrm{P}(Y>y \mid X=x)$ in terms of x, and obtain $\mathrm{P}(Y>y)$. Given that $\mathrm{E}(Y \mid X=x)=x^{-1}$, calculate $\mathrm{E}(Y)$.
