Imperial College London

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS)
 May-June 2007

This paper is also taken for the relevant examination for the Associateship.

M1S

Probability and Statistics

Date: Monday, 14th May 2007 Time: $2 \mathrm{pm}-4 \mathrm{pm}$

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. (a) Events E_{1} and E_{2} are exclusive, and E_{2} and E_{3} are independent. Let $\mathrm{P}\left(E_{j}\right)=p_{j}$ $(j=1,2,3)$ and $\mathrm{P}\left(E_{1} \mid E_{3}\right)=p_{13}$. Express $\mathrm{P}\left(E_{1} \mid E_{2}\right), \mathrm{P}\left(E_{2} \mid E_{3}\right), \mathrm{P}\left(E_{1} \cap E_{3}\right)$, $\mathrm{P}\left(E_{3} \mid E_{1}\right)$ and $\mathrm{P}\left(E_{1} \cup E_{3}\right)$ in terms of the $p \mathrm{~s}$.
(b) A machine component is subject to three types of corrosion, C_{1}, C_{2} and C_{3}. The known probabilities are $\mathrm{P}\left(C_{1}\right)=0.1, \mathrm{P}\left(C_{2}\right)=0.05, \mathrm{P}\left(C_{3}\right)=0.01$, and $\mathrm{P}\left(C_{1} \cup C_{2}\right)=0.12$. It is also known that C_{1} and C_{3} occur independently, and that C_{2} and C_{3} are exclusive. Compute the probabilities of the following states of deterioration:
(i) C_{1} and C_{3} both present;
(ii) C_{1} and C_{2} both present;
(iii) C_{1}, C_{2} and C_{3} all present;
(iv) C_{2} present, given that C_{1} is present;
(v) C_{1} present, given that C_{3} is present.
2. (a) A man can take either of two buses to work. The waiting times for them are T_{1} and T_{2}, which are independent each with density $\lambda \mathrm{e}^{-\lambda t}$ on $(0, \infty)$. Show that $\mathrm{P}\left(T_{1}>w\right)=\mathrm{e}^{-\lambda w}$. Assuming that he will take the first bus to arrive, what is the probability that his waiting time, say W, will exceed w ?
(b) Two generators operate independently and the cost of maintenance for each is c per month. The probability of breakdown during any given month is p for a maintained generator and 1 for an unmaintained generator. The cost of being without a generator, i.e. when neither generator is operating, is b. Calculate the expected costs over a given month of the following strategies: S0 - maintain neither generator; S1 - maintain just one generator; S 2 - maintain both generators. Given that $p(1-p)<\frac{c}{b}<1-p$, which is the cheapest strategy?
3. (a) Express $a=\mathrm{E}\left(Y^{2}\right)$ and $b=\mathrm{E}\{Y(1-Y)\}$ in terms of $\mu=\mathrm{E}(Y)$ and $\sigma^{2}=\operatorname{var}(Y)$. Evaluate a and b numerically when Y is uniformly distributed on $(0,1)$.
(b) The continuous random variable X has density $f(x)=(\alpha+1) x^{\alpha} / l^{\alpha+1}$ on $(0, l)$. Obtain the distribution function, $F_{X}(x)$, of X. Calculate $\mathrm{E}(X)$ and determine the distribution of the random variable $F_{X}(X)$.
4. A river level fluctuates randomly, the height V at any instant having probability density $f(v)=\xi^{-1}(1+v / \xi)^{-2}$ on $(0, \infty)$ with $\xi>0$.
(i) Find the distribution function of V and calculate the median river height.
(ii) Evaluate $\mathrm{P}(V>a+b \mid V>a)$, where $0<a<b$.

Now suppose that the height is recorded at the same time on n successive days, producing independent readings v_{1}, \ldots, v_{n}.
(iii) Calculate the probability that all n heights lie in the range (a, b).
(iv) For the case $n=4$ and $\xi=3$ show that the probability that at most one reading falls below the level $a=1$ is $7 \times 3^{3} / 4^{4}$.
5. The random variable X_{1} takes values $-1,0,1$ with probabilities $\frac{1}{4}, \frac{1}{2}, \frac{1}{4}$. If $X_{1}=0, X_{2}$ takes values 0,1 with probabilities $\frac{1}{2}, \frac{1}{2}$; otherwise, it takes values $-1,0$ with probabilities $\frac{1}{2}, \frac{1}{2}$.
(i) Show that $\mathrm{P}\left(X_{1}=-1, X_{2}=0\right)=\frac{1}{8}$. Draw up a table showing the joint distribution of X_{1} and X_{2}.
(ii) Derive the marginal distribution of X_{2} and calculate its mean and variance.
(iii) Determine the distribution of $X_{1}+X_{2}$.
(iv) Evaluate $\mathrm{E}\left(X_{2} \mid X_{1}=x\right)$ for $x=-1,0,1$, and derive $\mathrm{E}\left(X_{2}\right)$ from these conditional means.

