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1. (a) Show that:

(i) if E1 ⊆ E2 and P(E2) > 0, then P(E1 | E2) ≥ P(E1);

(ii) if P(E1) = 0 and P(E2) > 0, then P(E1 | E2) = 0.

(b) Three beads are drawn blind from a bag containing 3 red beads and 2 blue beads.

What is the probability that exactly 2 of the drawn beads are red when the drawing is

done:

(i) with replacement?

(ii) without replacement?

(iii) with replacement if the first bead drawn is red, otherwise without replacement?

2. The random variable X has density function 6x(1− x) on (0,1).

(i) Calculate the mean of X, the mean of X2 and the variance of X.

(ii) Let Y = X(1−X). What range of values can Y take?
Calculate the mean of Y , and the covariance of Y/X with Y/(1−X).

(iii) Let

Z =

(

X −
1

2

)2
.

Show that the distribution function of Y can be expressed as FY (y) = P
(
Z ≥ 1

4
− y
)
.

Write down the probability distribution of Y +Z. Why are Y and Z perfectly negatively

correlated?

(Give your answers in (i) and (ii) as fractions; there is no need to express them in decimal

form.)

3. (a) The random variable Z has standard normal distribution N(0,1).

Find the probability that the equation x2 − 2Zx + 1 = 0 has no real solution. How is
this probability changed if it is to be conditional on Z > 0?

(You may assume that Φ(1) = 0.8413.)

(b) A sequence of independent trials is performed in each of which the outcome value is 1 or

0 and P(outcome = 1) = q. Let R be the trial number on which the outcome ‘1’ first

occurs. Write down an expression for pr = P(R = r) and calculate E(R). Suppose now

that q is itself generated randomly, taking values 1
4
, 3
4
with respective probabilities 1

2
, 1
2
.

What form does pr take now? How is E(R) affected?

Hint:
∑∞
r=1 rλ

r−1 = (1− λ)−2 for 0 < λ < 1.
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4. (a) The distribution of the random variable X is given by P(X = 1) = 1
3
and P(X = 2) = 2

3
.

A second random variable, Y , is dependent on X: if X = 1, Y takes values 0,1,2 with

probabilities 1
2
, 1
4
, 1
4
; if X = 2, Y takes values 1,2,3 with respective probabilities 1

3
, 1
3
, 1
3
.

Draw up a table showing the joint distribution of (X,Y ). Determine the marginal

distribution of Y and the conditional distribution of X given that Y = 1.

(b) The joint density function of (U, V ) is

f(u, v) = k(1− u− v + uv) on (0, 1)2.

Determine the constant k and the marginal densities of U and V .

Calculate the covariance of U and V . Are U and V independent?

5. The random variable X takes values 0,1,2 with probabilities 1
4
, 1
2
, 1
4
. Evaluate its mean and

variance, and its probability generating function (pgf). Hence verify that X may be expressed

as a sum, Y1 + Y2, of two independent, identically distributed random variables, and specify

their common distribution. Write down the pgf of Sn = X1 + . . . + Xn, where the Xi are

independent and all distributed as X.

Hence show that

P(Sn = r) = 2
−2n

(
2n

r

)

for a certain range of r-values, which you should identify.

Use the pgf of Sn to calculate its mean and variance.

You may assume the binomial expansion:

(a+ b)m =
m∑

j=0

(
m

j

)

ajbm−j.
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