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1.

(a) State the three axioms of probability for events defined on a sample space Ω.

(b) Using the axioms of probability:

(i) Prove that for any events E, F ⊆ Ω, the probability of one and only one

of them occurring is

P(E) + P(F )− 2P(E ∩ F ).

(ii) A box contains 100 balls numbered serially from 1 to 100. A ball is drawn at

random. Calculate the probability that the number on the ball is divisible

by one and only one of the primes 3 and 5.

(c) If P(E|F ) > P(E) and P(E) > 0 and P(F ) > 0, prove that

(i) P(F |E) > P(F ),

(ii) P(E|F ′) < P(E).
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2.

(a) Suppose that F1, . . . , Fn form a partition of the sample space Ω, and P(Fi) > 0

for i = 1, . . . , n. Let E be any event in Ω, with P(E) > 0.

(i) State the Theorem of Total Probability.

(ii) Derive Bayes’ formula for P(Fi|E).

(b) 10% of computer hard disks produced by a manufacturer are faulty. A method

has been designed to test whether the disks are faulty or not. This test has a

probability of 0.9 of giving a positive result when applied to a faulty disk, and

a probability of 0.1 of giving a positive result when applied to a perfect disk. A

disk is chosen at random and tested.

(i) What is the probability that the test gives a positive result?

(ii) Given a positive result, what is the probability the disk is faulty?

(c) A bag contains n counters labelled with numbers 1, 2, . . . , n with n ≥ 2. Two

counters are drawn at random, one after the other, without replacement of the

first counter. Carefully define the sample space for this experiment. Find the

probability that

(i) the sum of the numbers on the counters is less than 6,

(ii) the numbers on the two counters differ by two.

[Hint: For both (c)(i) and (c)(ii) look at the cases n = 2, 3, etc separately until

you see the general pattern.]
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3.

The discrete random variable X has probability mass function P(X = x) = c/x for

x = 1, 2, . . . , n, where c and n are constants.

(a) Express c in terms of n.

(b) Express EfX
[X] and EfX

[X(X − 1)] in terms of c and n.

[Recall:
∑n

j=1 j = n(n + 1)/2.]

(c) If EfX
[X] = 4/3 show that n = 2 and deduce the value of c. [You may assume

without proof that n = 2 is a unique solution.]

(d) Using the values of c and n from part (c),

(i) Show that we can write P(X = x) in the form P(X = x) = θx−1(1−θ)2−x,

and state the range of X and the value of θ.

(ii) Derive the corresponding probability generating function and use it to

calculate EfX
[X(X − 1)]; does the result agree with that obtained in part

(b)?

(iii) How does the probability mass function derived here differ from that of a

Bernoulli random variable?
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4. Suppose X and Y are two independent random variables. Let X ∼ Gamma (n, ν),

with n a positive integer and ν a positive constant, and probability density function

fX(x) =
νn

(n− 1)!
xn−1e−νx (x > 0),

and Y ∼ Exponential (ν) with probability density function

fY (y) = νe−νy (y > 0).

The probability distribution of Z = X + Y is given by the convolution

fZ(z) =

∫ z

0

fX(x)fY (z − x)dx.

(a) Show that Z ∼ Gamma (n + 1, ν).

(b) Use the result in (a) to carefully deduce the distribution of the sum of n

independent random variables, each having the Exponential (ν) distribution.

(c) Derive the moment generating function of Y.

(d) Use the results of parts (b) and (c) to calculate the variance of X.
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5. Suppose X is a continuous random variable with a probability density function

that is symmetric about zero. Let Y = |X|.

(a) Show that the cumulative distribution function of Y, namely FY (y), is related

to the cumulative distribution function of X, namely FX(x), via

FY (y) =




2FX(y)− 1, if y ≥ 0;

0, if y < 0.

(b) Let X be a continuous random variable having the Laplace (also called the

double exponential) probability density function

fX(x) =
1

2
exp (−|x|) , −∞ < x <∞.

(i) Find FX(x) for x ≥ 0.

(ii) Hence derive FY (y) and fY (y).

(iii) Show that EfY
[Y ] = 1.
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