M1P2 ALGEBRA I, May 2008

1. Which of the following statements are true and which are false ? For those which you think are true, give a brief justification, and for those you think are false, give a counterexample.
(i) Every abelian group is cyclic.
(ii) The number of subgroups of S_{5} of size 3 is equal to 10 .
(iii) S_{14} has an element of order 44 .
(iv) $G L(2, \mathbb{R})$ has an element of order 3 .
(v) \mathbb{Z}_{11}^{*} is a cyclic group.
(vi) There is a non-abelian group G such that $x^{6}=e$ for all $x \in G$.
(vii) There is no group G such that $|G|=12$ and $x^{5}=e$ for all $x \in G$.
2. (a) Let G be a finite group, let H be a subgroup of G, and let $x \in G$. Define what is meant by the right coset $H x$.

Prove that if $x, y \in G$ then either $H x=H y$ or $H x \cap H y=\emptyset$.
Now let $G=S_{3}$ and let H be the cyclic subgroup of G generated by the 2-cycle (12). List all the distinct right cosets of H in G.
(b) Find all integers between 2 and 50 which divide $9^{11}-1$.
3. (a) Let V be a vector space, and let $\left\{v_{1}, \ldots, v_{k}\right\}$ be a set of vectors in V. Define what is meant by the following statements:
$\left\{v_{1}, \ldots, v_{k}\right\}$ is a linearly independent set
$\left\{v_{1}, \ldots, v_{k}\right\}$ is a spanning set for V
$\left\{v_{1}, \ldots, v_{k}\right\}$ is a basis of V.
(b) Suppose $\left\{v_{1}, \ldots, v_{k}\right\}$ is a spanning set for V, and let v be a non-zero vector in V. Prove that there is a value of i such that the set

$$
\left\{v, v_{1}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{k}\right\}
$$

is a spanning set for V. (You may NOT use any results from the lectures unless you prove them.)
(c) Let V be the vector space of polynomials over \mathbb{R} of degree at most 3 , and let $v_{1}, v_{2}, v_{3}, v_{4}$ be the following vectors in V :

$$
\begin{aligned}
& v_{1}=x-x^{3} \\
& v_{2}=-1+x^{2}+3 x^{3} \\
& v_{3}=x+x^{2}+2 x^{3} \\
& v_{4}=x^{3}
\end{aligned}
$$

Show that $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a spanning set for V.
If $v=2+3 x+x^{2}$, find a value of i as in (b).
4. Let V, W be vector spaces. Define what is meant by a linear transformation $T: V \rightarrow W$, and by the kernel $\operatorname{Ker}(T)$ of T.

Prove that $\operatorname{Ker}(T)$ is a subspace of V.
Find the dimension of $\operatorname{Ker}(T)$ in the following examples, justifying your answers:
(i) $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ defined by

$$
T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}-x_{3}+2 x_{4},-2 x_{1}+x_{2}+2 x_{3}, x_{2}+4 x_{4}\right)
$$

(ii) V is the vector space of polynomials over \mathbb{R} of degree at most 2 , and $T: V \rightarrow V$ defined by

$$
T(p(x))=2 p(x+1)-x p^{\prime}(x) \quad \forall p(x) \in V .
$$

(iii) V is the vector space of all 2×3 matrices over \mathbb{R}, and $T: V \rightarrow V$ defined by

$$
T(X)=\left(\begin{array}{cc}
1 & -1 \\
-2 & 2
\end{array}\right) X \quad \forall X \in V \text {. }
$$

