M1P2 ALGEBRA I

1. Define what is meant by the order of an element of a group.
(a) (i) Explain how to find the order of a permutation from its cycle shape. (No proof is required.)
(ii) Find the order of the permutation

$$
(12456)(235)(47) \in S_{7} .
$$

(iii) Give an example of an element of order 60 in the group S_{12}.
(iv) How many elements of order 3 are there in the group S_{6} ?
(b) Suppose that G is a finite group which contains elements of each of the orders $1,2,3,4,5,6,7,8$.

Prove that $|G| \geq 840$.
Give an example of a group G with $|G|=840$ such that G contains elements of each of the orders $1,2,3,4,5,6,7,8$.
(You may use any standard results provided you state them clearly.)
2. (a) What is the remainder when 5^{111} is divided by 23 ?
(b) What is the inverse of the element [13] in the group \mathbb{Z}_{97}^{*} ?
(c) Find all integers between 1 and 100 which divide $5^{17}-1$.
(d) Let p and q be distinct prime numbers, and let n be an integer which is not divisible by p or by q. Prove that

$$
n^{(p-1)(q-1)} \equiv 1 \bmod p q .
$$

(You may use any result you need from the lectures without proof, provided you state it clearly.)
3. (a) Let u, v, w be vectors in a vector space V. Prove the following results.
(i) If $v+w, u+w, u+v$ span V then u, v, w span V.
(ii) If u, v, w span V then $v+w, u+w, u+v$ span V.
(b) (i) Show that the linear code $C=\left\{x \in \mathbb{Z}_{2}^{8}: A x=0\right\}$ with check matrix

$$
A=\left(\begin{array}{llllllll}
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

corrects 2 errors. (You may use any standard results you require, provided you state them clearly.)
(ii) Let C be the code in the previous part. A codeword $c \in C$ is sent, two errors are made in transmission, and the received word is

$$
01011011 .
$$

Find the codeword c.
4. Let V, W be vector spaces. Define what is meant by a linear transformation $T: V \rightarrow W$. Define also the kernel Ker T and the image $\operatorname{Im} T$.

Prove the rank-nullity theorem: $\operatorname{dim}(\operatorname{Ker} T)+\operatorname{dim}(\operatorname{Im} T)=\operatorname{dim} V$.
Now let V be the vector space of all polynomials of degree at most 3 over \mathbb{R}, and define $T: V \rightarrow V$ by

$$
T(p(x))=p(x+1)+p(x-1)-2 p(x) \quad \text { for all } p(x) \in V
$$

Giving your justification, calculate the dimensions of $\operatorname{Ker} T$ and $\operatorname{Im} T$.
5. Let V be a finite-dimensional vector space, let B be a basis of V, and let $T: V \rightarrow V$ be a linear transformation. Define the matrix $[T]_{B}$ of T with respect to the basis B.

Now let V be the vector space consisting of all 2×2 matrices over \mathbb{R} with the usual addition and scalar multiplication. Let $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, and define $T: V \rightarrow V$ by

$$
T(X)=A X \quad \text { for all } X \in V
$$

(a) Show that T is a linear transformation.
(b) Write down a basis of V, and find the matrix $[T]_{B}$.
(c) Find the eigenvalues and eigenvectors of T.
(d) Does there exist a basis C of V such that the matrix $[T]_{C}$ is diagonal?

