- 1. Let u_1, u_2, \ldots, u_r and v_1, v_2, \ldots, v_s and e_1, e_2, \ldots, e_t be vectors in the vector space V over \mathbb{R} . Explain what is meant by each of the following statements.
 - (i) u_1, u_2, \ldots, u_r are linearly independent;
 - (ii) v_1, v_2, \dots, v_s span V;
 - (iii) e_1, e_2, \ldots, e_t is a basis of V.

Assuming that the vectors v_1, v_2, \ldots, v_s span V, show that some subset of $\{v_1, v_2, \ldots, v_s\}$ is a basis of V.

Stating clearly, but without proof, any preliminary results you need, explain why any two bases of V must have the same number of elements.

Give an example of a vector space which is not spanned by a finite set of vectors. Briefly justify your answer.

2. Let U and V be subspaces of a finite dimensional vector space W. Prove that U+V and $U\cap V$ are subspaces of W, and state (but do not prove) a formula which relates the dimensions of these subspaces to the dimensions of U and V.

Now let $W=\mathbb{R}^4$ and

$$U = \{(a, b, c, d) : b + c + d = 0\}$$
 and $V = \{(a, b, c, d) : b = -a\}.$

Find a basis of $U \cap V$ and calculate $\dim U$ and $\dim V$. Find a basis for U + V.

3. Let U and V be finite dimensional vector spaces over \mathbb{R} . What is meant by a linear map α from U to V?

State, but do not prove, a formula relating the dimensions of the kernel of α and the image of α .

Determine whether or not the following functions are linear maps from \mathbb{R}^3 to \mathbb{R}^2 .

- (a) $\alpha((x, y, z)) = (x + z, -y + z)$
- (b) $\alpha((x, y, z)) = (x, y + 1)$
- (c) $\alpha((x, y, z)) = (x, 0)$
- (d) $\alpha((x, y, z)) = (xyz, 0)$.

In the cases where α is a linear map, find bases for the kernel of α and the image of α .

- 4. (i) Construct a linear map α from \mathbb{R}^3 to \mathbb{R}^3 for which *precisely one vector* u in \mathbb{R}^3 satisfies $\alpha(u)=(0,1,0)$.
 - (ii) Construct a linear map β from \mathbb{R}^3 to \mathbb{R}^3 for which *no vector* u in \mathbb{R}^3 satisfies $\beta(u)=(0,1,0).$
 - (iii) Construct a linear map γ from \mathbb{R}^3 to \mathbb{R}^3 for which *infinitely many vectors* u in \mathbb{R}^3 satisfy $\gamma(u)=(0,1,0)$.
 - (iv) Explain why it is impossible to construct a linear map δ from \mathbb{R}^3 to \mathbb{R}^3 for which precisely two vectors u in \mathbb{R}^3 satisfy $\delta(u)=(0,1,0)$.
 - (v) Construct a linear map θ from \mathbb{R}^3 to \mathbb{R}^3 for which some vector u in \mathbb{R}^3 satisfies $\theta(\theta(u)) \neq \mathbf{0}$ but every vector v in \mathbb{R}^3 satisfies $\theta(\theta(v)) = \mathbf{0}$.
 - (vi) Construct a linear map ϕ from \mathbb{R}^3 to \mathbb{R}^3 for which some vector u in \mathbb{R}^3 satisfies $\phi(u) \neq u$ but every vector v in \mathbb{R}^3 satisfies $\phi(\phi(v)) = v$.

5. Let V be a vector space with basis e_1, e_2, \ldots, e_n and let α be a linear map from V to V. What is meant by the matrix of α with respect to the given basis?

Suppose that A is the matrix of α with respect to the basis e_1, e_2, \ldots, e_n of V and B is the matrix of α with respect to the basis f_1, f_2, \ldots, f_n of V. Prove that there exists an invertible matrix Q such that $B = Q^{-1}AQ$.

What is meant by the rank of a matrix X? Find the ranks of X, Y and XY when

$$X = \begin{pmatrix} 3 & 0 & -2 \\ -1 & 1 & 1 \\ 1 & 2 & 0 \end{pmatrix} \quad \text{and} \quad Y = \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & 1 \\ -1 & 2 & 0 \end{pmatrix} .$$