1. Let $u_{1}, u_{2}, \ldots, u_{r}$ and $v_{1}, v_{2}, \ldots, v_{s}$ and $e_{1}, e_{2}, \ldots, e_{t}$ be vectors in the vector space V over \mathbb{R}. Explain what is meant by each of the following statements.
(i) $u_{1}, u_{2}, \ldots, u_{r}$ are linearly independent;
(ii) $v_{1}, v_{2}, \ldots, v_{s}$ span V;
(iii) $e_{1}, e_{2}, \ldots, e_{t}$ is a basis of V.

Assuming that the vectors $v_{1}, v_{2}, \ldots, v_{s}$ span V, show that some subset of $\left\{v_{1}, v_{2}, \ldots, v_{s}\right\}$ is a basis of V.

Stating clearly, but without proof, any preliminary results you need, explain why any two bases of V must have the same number of elements.

Give an example of a vector space which is not spanned by a finite set of vectors. Briefly justify your answer.
2. Let U and V be subspaces of a finite dimensional vector space W. Prove that $U+V$ and $U \cap V$ are subspaces of W, and state (but do not prove) a formula which relates the dimensions of these subspaces to the dimensions of U and V.

Now let $W=\mathbb{R}^{4}$ and

$$
U=\{(a, b, c, d): b+c+d=0\} \quad \text { and } \quad V=\{(a, b, c, d): b=-a\} .
$$

Find a basis of $U \cap V$ and calculate $\operatorname{dim} U$ and $\operatorname{dim} V$. Find a basis for $U+V$.
3. Let U and V be finite dimensional vector spaces over \mathbb{R}. What is meant by a linear map α from U to V ?

State, but do not prove, a formula relating the dimensions of the kernel of α and the image of α.
Determine whether or not the following functions are linear maps from \mathbb{R}^{3} to \mathbb{R}^{2}.
(a) $\alpha((x, y, z))=(x+z,-y+z)$
(b) $\alpha((x, y, z))=(x, y+1)$
(c) $\alpha((x, y, z))=(x, 0)$
(d) $\alpha((x, y, z))=(x y z, 0)$.

In the cases where α is a linear map, find bases for the kernel of α and the image of α.
4. (i) Construct a linear map α from \mathbb{R}^{3} to \mathbb{R}^{3} for which precisely one vector u in \mathbb{R}^{3} satisfies $\alpha(u)=(0,1,0)$.
(ii) Construct a linear map β from \mathbb{R}^{3} to \mathbb{R}^{3} for which no vector u in \mathbb{R}^{3} satisfies $\beta(u)=(0,1,0)$.
(iii) Construct a linear map γ from \mathbb{R}^{3} to \mathbb{R}^{3} for which infinitely many vectors u in \mathbb{R}^{3} satisfy $\gamma(u)=(0,1,0)$.
(iv) Explain why it is impossible to construct a linear map δ from \mathbb{R}^{3} to \mathbb{R}^{3} for which precisely two vectors u in \mathbb{R}^{3} satisfy $\delta(u)=(0,1,0)$.
(v) Construct a linear map θ from \mathbb{R}^{3} to \mathbb{R}^{3} for which some vector u in \mathbb{R}^{3} satisfies $\theta(\theta(u)) \neq \mathbf{0}$ but every vector v in \mathbb{R}^{3} satisfies $\theta(\theta(\theta(v)))=\mathbf{0}$.
(vi) Construct a linear map ϕ from \mathbb{R}^{3} to \mathbb{R}^{3} for which some vector u in \mathbb{R}^{3} satisfies $\phi(u) \neq u$ but every vector v in \mathbb{R}^{3} satisfies $\phi(\phi(v))=v$.
5. Let V be a vector space with basis $e_{1}, e_{2}, \ldots, e_{n}$ and let α be a linear map from V to V. What is meant by the matrix of α with respect to the given basis?

Suppose that A is the matrix of α with respect to the basis $e_{1}, e_{2}, \ldots, e_{n}$ of V and B is the matrix of α with respect to the basis $f_{1}, f_{2}, \ldots, f_{n}$ of V. Prove that there exists an invertible matrix Q such that $B=Q^{-1} A Q$.
What is meant by the rank of a matrix X ? Find the ranks of X, Y and $X Y$ when

$$
X=\left(\begin{array}{ccc}
3 & 0 & -2 \\
-1 & 1 & 1 \\
1 & 2 & 0
\end{array}\right) \quad \text { and } \quad Y=\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & -1 & 1 \\
-1 & 2 & 0
\end{array}\right)
$$

