1. Suppose that V is a vector space over \mathbb{R}, and that $v_{1}, \ldots, v_{m}, w_{1}, \ldots, w_{n}$ belong to V. Explain what is meant by the following statements.

$$
\begin{aligned}
& v_{1}, \ldots, v_{m} \text { span } V \\
& w_{1}, \ldots, w_{n} \text { are linearly independent. }
\end{aligned}
$$

(a) Prove that if v_{1}, \ldots, v_{m} span V and $v_{m+1} \in V$ then $v_{1}, \ldots, v_{m}, v_{m+1}$ span V.
(b) Prove that if w_{1}, \ldots, w_{n} are linearly independent and $n \geq 2$ then w_{1}, \ldots, w_{n-1} are linearly independent.
(c) Suppose that $v_{1}, v_{2}, v_{3}, v_{4}$ span V. Does it follow that $v_{1}, v_{2}-v_{1}, v_{3}-$ $v_{2}, v_{4}-v_{3}$ span V ? Justify your answer.
(d) Suppose that $w_{1}, w_{2}, w_{3}, w_{4}$ are linearly independent. Does it follow that $w_{1}-2 w_{2}, 2 w_{2}-3 w_{3}, 3 w_{3}-4 w_{4}, 4 w_{4}-w_{1}$ are linearly independent? Justify your answer.
2. Let V be a finite dimensional vector space over \mathbb{R} and let U and W be subspaces of V. Define the subspaces $U \cap W$ and $U+W$. Prove that

$$
\operatorname{dim} U+\operatorname{dim} W=\operatorname{dim}(U \cap W)+\operatorname{dim}(U+W)
$$

Suppose that U_{1}, U_{2}, U_{3} are 5 -dimensional subspaces of \mathbb{R}^{7}. Prove that

$$
U_{1} \cap U_{2} \cap U_{3} \neq\{\mathbf{0}\} .
$$

3. Let V be a finite dimensional vector space over \mathbb{R} and let α be a linear map from V to V.

Prove that α sends $\mathbf{0}$ to $\mathbf{0}$.
Define the kernel and image of α and show that they are subspaces of V.
State an equation relating the dimensions of V, $\operatorname{Ker} \alpha$ and $\operatorname{Im} \alpha$. Give a very brief outline of how to justify this equation. (One or two sentences will suffice.)

Now let V be the vector space of polynomials of degree at most 3 with coefficients in \mathbb{R}. Suppose that α is a linear map from V to V and dim Ker $\alpha=3$. Prove that $\operatorname{Im} \alpha \subseteq \operatorname{Ker} \alpha$ or $(\operatorname{Im} \alpha) \cap(\operatorname{Ker} \alpha)=\{\mathbf{0}\}$. Give examples to show that both possibilities can occur.
4. Let U and V be vector spaces over \mathbb{R} and let α be a linear map from U to V. Suppose that e_{1}, \ldots, e_{n} is a basis of U and f_{1}, \ldots, f_{m} is a basis of V. Define the matrix of α with respect to these bases.

Now let $U=\mathbb{R}^{2}, V=\mathbb{R}^{3}$ and α be given by

$$
\alpha:(x, y) \longmapsto(x+y, x+y, x+y)
$$

(a) Find the matrix of α with respect to the bases

$$
(1,0),(0,1) \text { of } \mathbb{R}^{2} \text { and }(1,0,0),(0,1,0),(0,0,1) \text { of } \mathbb{R}^{3} .
$$

(b) Find the matrix of α with respect to the bases

$$
(1,2),(2,3) \text { of } \mathbb{R}^{2} \text { and }(0,1,1),(1,1,0),(3,2,0) \text { of } \mathbb{R}^{3} .
$$

(c) Find a basis e_{1}, e_{2} of \mathbb{R}^{2} and a basis f_{1}, f_{2}, f_{3} of \mathbb{R}^{3} such that the matrix of α with respect to these bases is

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right) .
$$

5. The entries $a_{i j}$ in the $n \times n$ matrix $A=\left(a_{i j}\right)$ are as follows.

$$
a_{i j}=\left\{\begin{array}{l}
-2 \text { if } i=j \\
-4 \text { if } j=i-1 \\
-1 \text { if } j=i+1 \\
0 \text { otherwise. }
\end{array}\right.
$$

So, for example,

$$
A_{3}=\left(\begin{array}{lll}
-2 & -1 & 0 \\
-4 & -2 & -1 \\
0 & -4 & -2
\end{array}\right)
$$

Prove that for $n \geq 3$, we have

$$
\operatorname{det} A_{n}=-2 \operatorname{det} A_{n-1}-4 \operatorname{det} A_{n-2} .
$$

Deduce that $\operatorname{det} A_{n}=8 \operatorname{det} A_{n-3}$. Hence find formulae for $\operatorname{det} A_{n}$ when n has the form $3 m-1,3 m$ and $3 m+1$.

How is $\operatorname{det} A_{n}$ related to $\operatorname{det}\left(-A_{n}\right)$?

