- 1. (a) Define what it means to say that a sequence (a_n) converges to a limit l.
	- (b) Let (a_n) be a convergent sequence and (b_n) be a bounded sequence. Prove, directly from your definition, that if $\lim_{n\to\infty}a_n=0$, then $\lim_{n\to\infty}a_nb_n^2=0.$
	- (c) State the Bolzano-Weierstrass theorem.
	- (d) Define what it means for a function $f : [a, b] \to \mathbf{R}$ to be continuous at a point $c \in (a, b)$ and what it means for a function f to be continuous on the interval $[a, b] \subset \mathbf{R}$.
	- (e) Using the Bolzano-Weierstrass theorem, or otherwise, prove that if $f : [a, b] \to \mathbf{R}$ is a continuous function, then it attains its least upper bound on $[a, b]$. In other words, there exists $c \in [a, b]$ such that

$$
f(c) = \text{lub}\{f(x) \mid x \in [a, b]\}.
$$

[You can use without proof, the fact that since f is continuous on $[a, b]$, it is bounded on $[a, b]$.]

- 2. (a) State the Monotonic Sequence Theorem.
	- (b) Show that

$$
\left(1 + \frac{1}{n}\right)^n = 2 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{n-1}{n}\right)
$$

for all $n \geq 1$.

(c) Using (b), or otherwise, show that $\Big(1+$ 1 n \setminus^n $< n$ for all $n \geq 3$.

- (d) Let (a_n) be the sequence defined as $a_n = n^{\frac{1}{n}}$ for all $n \geq 1$. Using (c), or otherwise, show that $a_{n+1} < a_n$ for all $n \geq 3$.
- (e) Prove that (a_n) is a convergent sequence.
- (f) Prove that $a_{2n} = 2^{\frac{1}{2n}} \sqrt{2n}$ $\overline{a_n}$ for all $n\geq 1$ and find the limit of $(a_n).$ [If required, you can use without proof the limit $\lim\limits_{n\to\infty}2^{\frac{1}{2n}}=1$ and the fact that the square root function is continuous.]
- 3. (a) Define what it means to say that a sequence (d_n) is Cauchy and state the General Principle of Convergence.
	- (b) Let (d_n) be a sequence for which there exists a constant $C \in (0,1)$ such that

$$
|d_{n+2} - d_{n+1}| \le C |d_{n+1} - d_n|
$$

for all $n \geq 1$. Show that, for any positive integers m, n such that $m < n$, we have

$$
|d_m - d_n| \le \frac{C^{m-1}}{1 - C} |d_2 - d_1|.
$$

- (c) Using (b) or otherwise, prove that (d_n) is convergent sequence.
- (d) Let (e_n) be a sequence such that

$$
e_{n+2} = \frac{1}{3}e_{n+1} + \frac{2}{3}e_n.
$$

for all $n \geq 1$. Using (c) or otherwise, prove that (e_n) is convergent sequence.

- (e) Find the limit of the sequence (e_n) .
- 4. (a) Define what it means to say that a series $\sum a_n$ is convergent.
	- (b) Determine whether the series $\sum a_n$ converges in each of the following cases:

(i)
$$
a_n = \frac{1}{2n} - \frac{1}{2n+1}
$$

(ii)
$$
a_n = 2008 \left(\frac{1}{n} - \frac{1}{n+1} \right) \sin \left(\frac{(2n+1)\pi}{2} \right)
$$

(iii)
$$
a_n = \frac{n}{\sqrt{3n^2 + 1}}
$$

[Give reasons in each case. You may use any standard tests and results without proof, provided that you make it clear which ones you are using.]

- (c) Define the radius of convergence of a power series $\sum^{\infty} a_n z^n$. $n=0$
- (d) $\;\;$ Find the radius of convergence of the power series $\sum_{n=0}^{\infty}$ $n=1$ $2^n(3-4i)$ $\frac{1}{n^3}z^n$.
- (e) Prove that the power series $\sum_{n=0}^{\infty}$ $n=1$ $2^n(3-4i)$ $\frac{(n-4i)}{n^3}z^n$ converges for any $z\in\mathbb{C}$ such that $|z| = \frac{1}{2}$ $\frac{1}{2}$.