1. (a) Define what it means to say that a sequence $\left(a_{n}\right)$ converges to a limit $l$.
(b) Let $\left(a_{n}\right)$ be a sequence with non-negative terms.
(i) Prove, directly from your definition, that if $\lim _{n \rightarrow \infty} a_{n}=0$, then $\lim _{n \rightarrow \infty} \sqrt{a_{n}}=0$.
(ii) Prove, directly from your definition, that if $\lim _{n \rightarrow \infty} a_{n}=2007$, then

$$
\lim _{n \rightarrow \infty} \sqrt{a_{n}}=\sqrt{2007}
$$

(c) Let $\left(b_{n}\right)$ be a convergent sequence of complex numbers and $\left(c_{n}\right)$ be another sequence such that

$$
\left|b_{n}-c_{n}\right| \leq \frac{n}{n \sqrt{n}-1}
$$

for all $n \geq 2$. Prove that $\left(c_{n}\right)$ is a convergent sequence. [You may use any standard results without proofs, provided that you make it clear which ones you are using.]
2. (a) State the Monotonic Sequence Theorem.
(b) Let $\left(c_{n}\right)$ be the sequence defined as

$$
c_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2 n}
$$

for all $n \geq 1$.
(i) Prove that $\frac{1}{2} \leq c_{n} \leq 1$ for any $n \geq 0$.
(ii) Prove that $\left(c_{n}\right)$ is a convergent sequence.
(c) Define what it means to say that a sequence $\left(d_{n}\right)$ is Cauchy and state the General Principle of Convergence.
(d) Let $\left(e_{n}\right)$ and $\left(f_{n}\right)$ be two convergent sequences and $\left(g_{n}\right)$ be the sequence defined as

$$
g_{n}= \begin{cases}e_{n} & \text { if } n \text { odd } \\ f_{n} & \text { if } n \text { even }\end{cases}
$$

for all $n \geq 1$. Show that $\left(g_{n}\right)$ is Cauchy if and only if $\lim _{n \rightarrow \infty} e_{n}=\lim _{n \rightarrow \infty} f_{n}$.
3. (a) Define what it means to say that a series $\sum a_{n}$ is convergent.
(b) Determine whether the series $\sum a_{n}$ converges in each of the following cases:
(i) $a_{n}=\frac{\cos \pi n}{2 \sqrt{n}-1}$
(ii) $\quad a_{n}=\frac{(3 n)!}{(n!)^{3}}$
(iii) $\quad a_{n}=\frac{n \sqrt{n}-1}{n^{2}+1}$
(iv) $\quad a_{n}=(n+2)^{\frac{1}{n}}$.
[Give reasons in each case. You may use any standard tests and results without proof, provided that you make it clear which ones you are using.]
4. (a) Define the radius of convergence of a power series $\sum_{n=0}^{\infty} a_{n} z^{n}$.
(b) Find the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{3^{n}(1+i)}{n} z^{2 n}$
(c) Prove that the power series $\sum_{n=1}^{\infty} \frac{3^{n}(1+i)}{n} z^{2 n}$ diverges for $z=-\frac{1}{\sqrt{3}}$.
(d) Define the product of two powers series $\sum_{n=0}^{\infty} a_{n} z^{n}$ and $\sum_{n=0}^{\infty} b_{n} z^{n}$.
(e) Find the product of the power series $\sum_{n=2}^{\infty} \frac{2^{n}}{n!} z^{2 n}$ with itself.
5. (a) Define what it means for a function $f: \mathbf{R} \rightarrow \mathbf{R}$ to be continuous at $a$.
(b) Let $f: \mathbf{R} \rightarrow \mathbf{R}$ and $g: \mathbf{R} \rightarrow \mathbf{R}$ be two functions continuous at $a \in \mathbf{R}$. Show that if $f(a)>g(a)$ then there exists $\delta>0$ such that $f(x)>g(x)$ for any $x \in(a-\delta, a+\delta)$.
(c) Let $f: \mathbf{R} \rightarrow \mathbf{R}$ and $g: \mathbf{R} \rightarrow \mathbf{R}$ be two continuous functions. Show that the function $h: \mathbf{R} \rightarrow \mathbf{R}$ defined as

$$
h(x)=\max (f(x), g(x))
$$

for any $x \in \mathbf{R}$, is continuous.

