- 1. (a) Define what it means to say that a sequence (a_n) converges to a limit l.
 - (b) Prove (directly from your definition) that
 - (i) $\frac{\cos{(n\pi)}}{\sqrt{n}} \to 0.$
 - (ii) $\frac{n^2 + (-1)^n n}{3 + 2n^2} \to \frac{1}{2}$.
 - (c) Let (a_n) be a sequence with nonnegative terms and (b_n) be the sequence defined as

$$b_n = \frac{a_n - 1}{a_n + 1}$$

for all n > 0. Prove that $b_n < 1$ for all n > 0 and that

$$|a_n - 1| = \frac{2|b_n|}{1 - b_n}$$
.

- (d) Use (c) or otherwise to show that $b_n \to 0$ implies $a_n \to 1$ (again, directly from your definition).
- 2. (a) Define what it means to say that a sequence (a_n) is Cauchy.
 - (b) State the General Principle of Convergence.
 - (c) Let (a_n) be a sequence with the property that there exists a positive constant r<1 such that

$$|a_{n+1} - a_n| \le r|a_n - a_{n-1}|$$

for all n > 1. Prove that, for any 0 < n < m,

$$|a_m - a_n| \le (r^n + r^{n+1} + \ldots + r^{m-1}) |a_1 - a_0|.$$

- (d) Using (c) or otherwise show that (a_n) is a convergent sequence. [You can use without proof the fact that $r^n \to 0$ if $0 \le r < 1$.]
- 3. (a) Define what it means to say that a series $\sum a_n$ is convergent.
 - (b) Determine whether the series $\sum a_n$ converges in each of the following cases:
 - (i) $a_n = \left(\cos\left(\frac{n\pi}{2}\right)\right)^2$
 - (ii) $a_n = \frac{2n+1}{n+n^2}$
 - (iii) $a_n = \frac{(-1)^n}{n \ln (n+1)}$
 - (iv) $a_n = \frac{2 + (-1)^n}{4^n}$.

[Give reasons in each case. You may use any standard tests and results without proof, provided that you make it clear which ones you are using.]

- 4. (a) Define the product of two powers series $\sum_{n=0}^{\infty} a_n z^n$ and $\sum_{n=0}^{\infty} b_n z^n$.
 - (b) Show that the product of the power series $\sum_{n=0}^{\infty} (-1)^n z^{2n}$ with itself is

$$\sum_{n=0}^{\infty} (-1)^n (n+1) z^{2n}.$$

- (c) Define the radius of convergence of a power series $\sum_{n=0}^{\infty} a_n z^n$.
- (d) Find the radius of convergence of the power series

$$\sum_{n=0}^{\infty} (-1)^n (n+1) z^{2n}.$$

5. (a) Show that the power series

$$\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$

is absolutely convergent for any real number x.

(b) Show that

$$\sum_{n=1}^{\infty} \frac{x^{2n}}{(2n)!} \le \sum_{n=1}^{\infty} x^{2n}$$

for |x| < 1.

- (c) Define what it means for a function $f: \mathbf{R} \to \mathbf{R}$ to be continuous at a.
- (d) Let f be the function defined as

$$f(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$

for any real number x. Use (b) to show that

$$|f(x) - 1| \le \frac{x^2}{1 - x^2}$$
 (1)

for |x| < 1, and use (??) or otherwise to prove that f is continuous at 0.