1. (a) Define what it means to say that a sequence $\left(a_{n}\right)$ converges to a limit l.
(b) Prove (directly from your definition) that
(i) $\frac{\cos (n \pi)}{\sqrt{n}} \rightarrow 0$.
(ii) $\quad \frac{n^{2}+(-1)^{n} n}{3+2 n^{2}} \rightarrow \frac{1}{2}$.
(c) Let $\left(a_{n}\right)$ be a sequence with nonnegative terms and $\left(b_{n}\right)$ be the sequence defined as

$$
b_{n}=\frac{a_{n}-1}{a_{n}+1}
$$

for all $n>0$. Prove that $b_{n}<1$ for all $n>0$ and that

$$
\left|a_{n}-1\right|=\frac{2\left|b_{n}\right|}{1-b_{n}}
$$

(d) Use (c) or otherwise to show that $b_{n} \rightarrow 0$ implies $a_{n} \rightarrow 1$ (again, directly from your definition).
2. (a) Define what it means to say that a sequence $\left(a_{n}\right)$ is Cauchy.
(b) State the General Principle of Convergence.
(c) Let $\left(a_{n}\right)$ be a sequence with the property that there exists a positive constant $r<1$ such that

$$
\left|a_{n+1}-a_{n}\right| \leq r\left|a_{n}-a_{n-1}\right|
$$

for all $n>1$. Prove that, for any $0<n<m$,

$$
\left|a_{m}-a_{n}\right| \leq\left(r^{n}+r^{n+1}+\ldots+r^{m-1}\right)\left|a_{1}-a_{0}\right|
$$

(d) Using (c) or otherwise show that $\left(a_{n}\right)$ is a convergent sequence.
[You can use without proof the fact that $r^{n} \rightarrow 0$ if $0 \leq r<1$.]
3. (a) Define what it means to say that a series $\sum a_{n}$ is convergent.
(b) Determine whether the series $\sum a_{n}$ converges in each of the following cases:
(i) $\quad a_{n}=\left(\cos \left(\frac{n \pi}{2}\right)\right)^{2}$
(ii) $a_{n}=\frac{2 n+1}{n+n^{2}}$
(iii) $a_{n}=\frac{(-1)^{n}}{n \ln (n+1)}$
(iv) $a_{n}=\frac{2+(-1)^{n}}{4^{n}}$.
[Give reasons in each case. You may use any standard tests and results without proof, provided that you make it clear which ones you are using.]
4. (a) Define the product of two powers series $\sum_{n=0}^{\infty} a_{n} z^{n}$ and $\sum_{n=0}^{\infty} b_{n} z^{n}$.
(b) Show that the product of the power series $\sum_{n=0}^{\infty}(-1)^{n} z^{2 n}$ with itself is

$$
\sum_{n=0}^{\infty}(-1)^{n}(n+1) z^{2 n}
$$

(c) Define the radius of convergence of a power series $\sum_{n=0}^{\infty} a_{n} z^{n}$.
(d) Find the radius of convergence of the power series

$$
\sum_{n=0}^{\infty}(-1)^{n}(n+1) z^{2 n}
$$

5. (a) Show that the power series

$$
\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}
$$

is absolutely convergent for any real number x.
(b) Show that

$$
\sum_{n=1}^{\infty} \frac{x^{2 n}}{(2 n)!} \leq \sum_{n=1}^{\infty} x^{2 n}
$$

for $|x|<1$.
(c) Define what it means for a function $f: \mathbf{R} \rightarrow \mathbf{R}$ to be continuous at a.
(d) Let f be the function defined as

$$
f(x)=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}
$$

for any real number x. Use (b) to show that

$$
\begin{equation*}
|f(x)-1| \leq \frac{x^{2}}{1-x^{2}} \tag{1}
\end{equation*}
$$

for $|x|<1$, and use (??) or otherwise to prove that f is continuous at 0 .

