M1P1

1
a Define what it means to say that a sequence $\left(a_{n}\right)$ converges to a limit l.
b Prove (directly from your definition) that
$\mathrm{i} \frac{(-1)^{n}}{n^{2}} \rightarrow 0$.
ii $\frac{1-2 e^{n}}{e^{n}+3} \rightarrow-2$.
c Let $\left(a_{n}\right)$ be a sequence convergent to 0 and $\left(b_{n}\right)$ be the sequence defined as

$$
b_{n}=\frac{1}{n}\left(a_{1}+a_{2}+\ldots+a_{n}\right) \text { for all } \mathrm{n} \geq 1
$$

Prove that $b_{n} \rightarrow 0$.
2
a State the Monotonic Sequence Theorem.
b Prove that the sequence $\left(a_{n}\right)$ defined as $a_{1}=0.5$ and

$$
a_{n+1}=a_{n}-a_{n}^{2} \text { for all } \mathrm{n} \geq 1
$$

is convergent and find its limit.
c Let $\left(a_{n}\right)$ be a sequence with positive terms $\left(a_{n}>0\right.$ for all $\left.n>0\right)$. Suppose there exists a number $r<1$ and an integer n_{0} such that

$$
\frac{a_{n+1}}{a_{n}} \leq r \text { for all } \mathrm{n} \geq \mathrm{n}_{0}
$$

Prove that $a_{n} \longrightarrow 0$. [You can use without proof the result $r^{n} \longrightarrow 0$.]
d Using (c), or otherwise, show that $\frac{2^{n}}{n!} \rightarrow 0$.
3
a Define what it means to say that a sequence $\left(a_{n}\right)$ is Cauchy.
b State the General Principle of Convergence.
c Let $\left(a_{n}\right)$ be the following sequence

$$
a_{n}=\frac{1}{1}+\frac{1}{3}+\ldots+\frac{1}{2 n-1} \text { for all } \mathrm{n} \geq 1
$$

Prove that $\left|a_{2 n}-a_{n}\right| \geq \frac{n}{4 n-1}$.
d Using (c), or otherwise, show that $\left(a_{n}\right)$ is not a convergent sequence.

4

a Define what it means to say that a series $\sum a_{n}$ is convergent.
b Determine whether the series $\sum a_{n}$ converges in each of the following cases:
i $a_{n}=\frac{1}{3 n+1}-\frac{1}{3 n+4}$.
ii $a_{n}=\frac{1+n}{n^{2}+1}$.
iii $a_{n}=(-1)^{n}\left(\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2 n}\right)$.
[Give reasons in each case. You may use any standard tests and results without proof, provided that you make it clear which ones you are using.]
c Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be two sequences of positive terms such that $\frac{a_{n}}{b_{n}} \rightarrow 2$. Prove that $\sum a_{n}$ is convergent if and only if $\sum b_{n}$ is convergent.

5
a Define the radius of convergence of a power series $\sum a_{n} z^{n} \mathrm{~b}$ Find the radius of convergence of the following power series:
i $\sum(n+1) z^{n}$.
ii $\sum 2^{n} z^{2 n+1}$.
c Let $\left(a_{n}\right)$ be a sequence for which there exists two positive constants r and a such that

$$
\frac{\left|a_{n}\right|}{r^{n}} \rightarrow a .
$$

Prove that the power series $\sum a_{n} z^{n}$ has radius of convergence $\frac{1}{r}$.
d What is the radius of convergence of the series $\sum_{n=0}^{\infty} \frac{1-n 2^{n}}{n+1} z^{n}$?

