M1P1

1.

i. Define what it means to say that a sequence $\left(a_{n}\right)$ converges to a limit l.
ii. Prove (directly from your definition) that
(a) $\frac{1}{\sqrt{n}} \rightarrow 0$;
(b) $\frac{3 n+1}{2 n-1} \rightarrow \frac{3}{2}$;
iii. Let $\left(a_{n}\right)$ be a bounded sequence and $\left(b_{n}\right)$ be a sequence converging to 0 . Prove that $a_{n} b_{n} \rightarrow 0$. Hence prove that

$$
(\sqrt{n+2}-\sqrt{n}) \cos n \rightarrow 0
$$

2.

i. Let $\left(a_{n}\right)$ be a sequence and $\left(a_{n_{k}}\right)$ be a subsequence of $\left(a_{n}\right)$. Prove that $a_{n} \rightarrow l$ implies $a_{n_{k}} \rightarrow l$.
ii. Using i. (or otherwise) show that the sequence $\left(a_{n}\right)$, where

$$
a_{n}=\frac{\sin n \pi+2}{3-\cos n \pi} \text { for all } n>0
$$

is not convergent.
iii. Let $\left(a_{n}\right)$ be a sequence such that the subsequences $\left(a_{2 n}\right)$ and $\left(a_{2 n+1}\right)$ both converge to the same limit l. Prove that $a_{n} \rightarrow l$.
iv. Using iii. (or otherwise) show that

$$
\frac{(-1)^{n} \sqrt{n}}{1+(-1)^{n+1} \sqrt{n}} \rightarrow-1
$$

3.

i. State the Monotonic Sequence Theorem (MST).
ii. Using the Monotonic Sequence Theorem (or otherwise) prove that the sequence $\left(a_{n}\right)$ defined as $a_{1}=1$ and

$$
a_{n+1}=\frac{a_{n}}{\sqrt{\left(a_{n}\right)^{2}+1}} \text { for } n>0
$$

is convergent.
iii. Prove that any sequence of real numbers has a monotonic subsequence.
4.
i. Define what it means to say that a series $\sum a_{n}$ is convergent.
ii. Determine whether the series $\sum a_{n}$ converges in each of the following cases.
(a) $a_{n}=\sqrt{2 n+2}-\sqrt{2 n}$;
(d) $a_{n}=(-1)^{n}\left(\frac{1}{n}+\frac{1}{n+1}\right)$;
(b) $a_{n}=\frac{1+n}{1-3 n^{3}}$;
(e) $a_{n}=\frac{1}{\sqrt{n}}+(-1)^{n} \frac{1}{n}$.
(c) $a_{n}=\frac{2 n+1}{n!}$;
[Give reasons in each case. You may use any standard tests and results without proof, provided that you make it clear which ones you are using.]
5.
i. Let $\left(c_{n}\right)$ be a sequence such that the series $\sum 2^{n} c_{n}$ is convergent. Prove that the power series $\sum c_{n} z^{n}$ is absolutely convergent for any z such that $|z|<2$.
ii. Define the radius of convergence of a power series $\sum a_{n} z^{n}$.
iii. Define the product of the power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ and $\sum_{n=0}^{\infty} b_{n} z^{n}$.
iv. What is the radius of convergence of the product of the power series $\sum_{n=0}^{\infty} z^{n}$ and $\sum_{n=0}^{\infty}(-1)^{n+1} z^{n}$?

